Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers.

Gabriel GJ, Maegerlein JA, Nelson CF, Dabkowski JM, Eren T, Nüsslein K, Tew GN.

Chemistry. 2009;15(2):433-9. doi: 10.1002/chem.200801233.

2.

Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers.

Palermo EF, Vemparala S, Kuroda K.

Biomacromolecules. 2012 May 14;13(5):1632-41. doi: 10.1021/bm300342u. Epub 2012 Apr 17.

PMID:
22475325
3.

Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates.

Punia A, Lee K, He E, Mukherjee S, Mancuso A, Banerjee P, Yang NL.

Int J Mol Sci. 2015 Oct 9;16(10):23867-80. doi: 10.3390/ijms161023867.

4.

Nature-inspired antimicrobial polymers--assessment of their potential for biomedical applications.

Al-Ahmad A, Laird D, Zou P, Tomakidi P, Steinberg T, Lienkamp K.

PLoS One. 2013 Sep 9;8(9):e73812. doi: 10.1371/journal.pone.0073812. eCollection 2013.

5.

Interactions between antimicrobial polynorbornenes and phospholipid vesicles monitored by light scattering and microcalorimetry.

Gabriel GJ, Pool JG, Som A, Dabkowski JM, Coughlin EB, Muthukumar M, Tew GN.

Langmuir. 2008 Nov 4;24(21):12489-95. doi: 10.1021/la802232p. Epub 2008 Oct 8.

PMID:
18841926
6.

Block versus random amphiphilic copolymers as antibacterial agents.

Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K.

Biomacromolecules. 2011 Oct 10;12(10):3581-91. doi: 10.1021/bm200780r. Epub 2011 Sep 6.

PMID:
21846110
7.

Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties.

Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nüsslein K, Tew GN.

Biomacromolecules. 2008 Nov;9(11):2980-3. doi: 10.1021/bm800855t. Epub 2008 Oct 14.

8.

Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives.

Ilker MF, Nüsslein K, Tew GN, Coughlin EB.

J Am Chem Soc. 2004 Dec 8;126(48):15870-5.

PMID:
15571411
9.

Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

Hoque J, Akkapeddi P, Yadav V, Manjunath GB, Uppu DS, Konai MM, Yarlagadda V, Sanyal K, Haldar J.

ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1804-15. doi: 10.1021/am507482y. Epub 2015 Jan 17.

PMID:
25541751
10.

Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers.

Al-Badri ZM, Som A, Lyon S, Nelson CF, Nüsslein K, Tew GN.

Biomacromolecules. 2008 Oct;9(10):2805-10. doi: 10.1021/bm800569x. Epub 2008 Sep 25.

PMID:
18816096
11.

Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.

Lienkamp K, Madkour AE, Musante A, Nelson CF, Nüsslein K, Tew GN.

J Am Chem Soc. 2008 Jul 30;130(30):9836-43. doi: 10.1021/ja801662y. Epub 2008 Jul 1.

12.

Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

Wang H, Shi X, Yu D, Zhang J, Yang G, Cui Y, Sun K, Wang J, Yan H.

Langmuir. 2015 Dec 22;31(50):13469-77. doi: 10.1021/acs.langmuir.5b03182. Epub 2015 Dec 10.

PMID:
26606647
13.

Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers.

Palermo EF, Lee DK, Ramamoorthy A, Kuroda K.

J Phys Chem B. 2011 Jan 20;115(2):366-75. doi: 10.1021/jp1083357. Epub 2010 Dec 21.

14.

Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization.

Mizutani M, Palermo EF, Thoma LM, Satoh K, Kamigaito M, Kuroda K.

Biomacromolecules. 2012 May 14;13(5):1554-63. doi: 10.1021/bm300254s. Epub 2012 Apr 24.

PMID:
22497522
15.

Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity.

Colak S, Nelson CF, Nüsslein K, Tew GN.

Biomacromolecules. 2009 Feb 9;10(2):353-9. doi: 10.1021/bm801129y.

16.

Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections.

Taresco V, Crisante F, Francolini I, Martinelli A, D'Ilario L, Ricci-Vitiani L, Buccarelli M, Pietrelli L, Piozzi A.

Acta Biomater. 2015 Aug;22:131-40. doi: 10.1016/j.actbio.2015.04.023. Epub 2015 Apr 25.

PMID:
25917843
17.

Development of a New Monomer for the Synthesis of Intrinsic Antimicrobial Polymers with Enhanced Material Properties.

Brodkorb F, Fischer B, Kalbfleisch K, Robers O, Braun C, Dohlen S, Kreyenschmidt J, Lorenz R, Kreyenschmidt M.

Int J Mol Sci. 2015 Aug 24;16(8):20050-66. doi: 10.3390/ijms160820050.

18.

Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

Punia A, He E, Lee K, Banerjee P, Yang NL.

Chem Commun (Camb). 2014 Jul 7;50(53):7071-4. doi: 10.1039/c4cc01583e.

PMID:
24854366
19.

Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers.

Palermo EF, Sovadinova I, Kuroda K.

Biomacromolecules. 2009 Nov 9;10(11):3098-107. doi: 10.1021/bm900784x.

PMID:
19803480
20.

Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities.

Palermo EF, Kuroda K.

Biomacromolecules. 2009 Jun 8;10(6):1416-28. doi: 10.1021/bm900044x.

PMID:
19354291

Supplemental Content

Support Center