Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia.

Ehrlichman RS, Gandal MJ, Maxwell CR, Lazarewicz MT, Finkel LH, Contreras D, Turetsky BI, Siegel SJ.

Neuroscience. 2009 Jan 23;158(2):705-12. doi: 10.1016/j.neuroscience.2008.10.031. Epub 2008 Oct 28.

PMID:
19015010
2.

NMDA antagonists recreate signal-to-noise ratio and timing perturbations present in schizophrenia.

Saunders JA, Gandal MJ, Siegel SJ.

Neurobiol Dis. 2012 Apr;46(1):93-100. doi: 10.1016/j.nbd.2011.12.049. Epub 2012 Jan 9.

3.

Antipsychotic compounds differentially modulate high-frequency oscillations in the rat nucleus accumbens: a comparison of first- and second-generation drugs.

Olszewski M, Piasecka J, Goda SA, Kasicki S, Hunt MJ.

Int J Neuropsychopharmacol. 2013 Jun;16(5):1009-20. doi: 10.1017/S1461145712001034. Epub 2012 Nov 21.

PMID:
23171738
4.

Reversal of evoked gamma oscillation deficits is predictive of antipsychotic activity with a unique profile for clozapine.

Hudson MR, Rind G, O'Brien TJ, Jones NC.

Transl Psychiatry. 2016 Apr 19;6:e784. doi: 10.1038/tp.2016.51.

5.

Mice expressing constitutively active Gsalpha exhibit stimulus encoding deficits similar to those observed in schizophrenia patients.

Maxwell CR, Liang Y, Kelly MP, Kanes SJ, Abel T, Siegel SJ.

Neuroscience. 2006 Sep 1;141(3):1257-64. Epub 2006 Jun 5.

6.

Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine.

Hong LE, Summerfelt A, Buchanan RW, O'Donnell P, Thaker GK, Weiler MA, Lahti AC.

Neuropsychopharmacology. 2010 Feb;35(3):632-40. doi: 10.1038/npp.2009.168. Epub 2009 Nov 4.

7.

Acute administration of typical and atypical antipsychotics reduces EEG γ power, but only the preclinical compound LY379268 reduces the ketamine-induced rise in γ power.

Jones NC, Reddy M, Anderson P, Salzberg MR, O'Brien TJ, Pinault D.

Int J Neuropsychopharmacol. 2012 Jun;15(5):657-68. doi: 10.1017/S1461145711000848. Epub 2011 Jun 9.

8.

Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice.

Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ.

J Cogn Neurosci. 2008 Aug;20(8):1403-14. doi: 10.1162/jocn.2008.20097.

PMID:
18303985
9.

Ketamine modulates theta and gamma oscillations.

Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ.

J Cogn Neurosci. 2010 Jul;22(7):1452-64. doi: 10.1162/jocn.2009.21305.

PMID:
19583475
10.

Electrophysiological alterations in a complex rat model of schizophrenia.

Horvath G, Petrovszki Z, Kekesi G, Tuboly G, Bodosi B, Horvath J, Gombkötő P, Benedek G, Nagy A.

Behav Brain Res. 2016 Jul 1;307:65-72. doi: 10.1016/j.bbr.2016.03.051. Epub 2016 Mar 30.

PMID:
27036646
11.

Effects of aberrant gamma frequency oscillations on prepulse inhibition.

Jones NC, Anderson P, Rind G, Sullivan C, van den Buuse M, O'Brien TJ.

Int J Neuropsychopharmacol. 2014 Oct;17(10):1671-81. doi: 10.1017/S1461145714000492. Epub 2014 May 15.

PMID:
24832766
12.

Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials.

Siegel SJ, Maxwell CR, Majumdar S, Trief DF, Lerman C, Gur RE, Kanes SJ, Liang Y.

Neuroscience. 2005;133(3):729-38.

PMID:
15908134
13.

Auditory steady state responses in a schizophrenia rat model probed by excitatory/inhibitory receptor manipulation.

Vohs JL, Chambers RA, O'Donnell BF, Krishnan GP, Morzorati SL.

Int J Psychophysiol. 2012 Nov;86(2):136-42. doi: 10.1016/j.ijpsycho.2012.04.002. Epub 2012 Apr 12.

14.

Haloperidol counteracts the ketamine-induced disruption of processing negativity, but not that of the P300 amplitude.

Oranje B, Gispen-de Wied CC, Westenberg HG, Kemner C, Verbaten MN, Kahn RS.

Int J Neuropsychopharmacol. 2009 Jul;12(6):823-32. doi: 10.1017/S1461145708009814. Epub 2009 Jan 21.

PMID:
19154656
15.

Involvement of glutamatergic and GABAergic transmission in MK-801-increased gamma band oscillation power in rat cortical electroencephalograms.

Hiyoshi T, Kambe D, Karasawa J, Chaki S.

Neuroscience. 2014 Nov 7;280:262-74. doi: 10.1016/j.neuroscience.2014.08.047. Epub 2014 Sep 8.

PMID:
25220900
16.

NMDA antagonist MK801 recreates auditory electrophysiology disruption present in autism and other neurodevelopmental disorders.

Saunders JA, Gandal MJ, Roberts TP, Siegel SJ.

Behav Brain Res. 2012 Oct 1;234(2):233-7. doi: 10.1016/j.bbr.2012.06.032. Epub 2012 Jul 5.

17.

NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia.

Olszewski RT, Janczura KJ, Ball SR, Madore JC, Lavin KM, Lee JC, Lee MJ, Der EK, Hark TJ, Farago PR, Profaci CP, Bzdega T, Neale JH.

Transl Psychiatry. 2012 Jul 31;2:e145. doi: 10.1038/tp.2012.68.

18.

Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia.

McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE.

Neuroscience. 2011 Dec 29;199:51-63. doi: 10.1016/j.neuroscience.2011.10.015. Epub 2011 Oct 19.

19.

Effect of 'chronic' versus 'acute' ketamine administration and its 'withdrawal' effect on behavioural alterations in mice: implications for experimental psychosis.

Chatterjee M, Ganguly S, Srivastava M, Palit G.

Behav Brain Res. 2011 Jan 1;216(1):247-54. doi: 10.1016/j.bbr.2010.08.001. Epub 2010 Aug 8.

PMID:
20699106
20.

Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia.

Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B.

Brain Struct Funct. 2012 Apr;217(2):395-409. doi: 10.1007/s00429-011-0351-8. Epub 2011 Oct 7.

Supplemental Content

Support Center