Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter.

He L, Gong M, Li CF, Guo GC, Zunger A.

Phys Rev Lett. 2008 Oct 10;101(15):157405. Epub 2008 Oct 9.

PMID:
18999641
2.

Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.

Wang J, Gong M, Guo GC, He L.

Phys Rev Lett. 2015 Aug 7;115(6):067401. Epub 2015 Aug 5.

PMID:
26296130
3.

Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.

Fillipov S, Puttisong Y, Huang Y, Buyanova IA, Suraprapapich S, Tu CW, Chen WM.

ACS Nano. 2015 Jun 23;9(6):5741-9. doi: 10.1021/acsnano.5b01387. Epub 2015 May 15.

4.

Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.

Zieliński M.

J Phys Condens Matter. 2013 Nov 20;25(46):465301. doi: 10.1088/0953-8984/25/46/465301. Epub 2013 Oct 15.

PMID:
24129261
5.

Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress.

Gong M, Zhang W, Guo GC, He L.

Phys Rev Lett. 2011 Jun 3;106(22):227401. Epub 2011 May 31.

PMID:
21702632
6.

Experimental methods of post-growth-tuning of the excitonic fine structure splitting in semiconductor quantum dots.

Plumhof JD, Trotta R, Rastelli A, Schmidt OG.

Nanoscale Res Lett. 2012;7(1):336. doi: 10.1186/1556-276X-7-336. Epub 2012 Jun 22.

7.

Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.

Trotta R, Wildmann JS, Zallo E, Schmidt OG, Rastelli A.

Nano Lett. 2014 Jun 11;14(6):3439-44. doi: 10.1021/nl500968k. Epub 2014 May 29.

PMID:
24845369
8.

Near-infrared nano-imaging spectroscopy using a phase change mask method.

Sato Y, Kanazawa S, Saiki T.

Microscopy (Oxf). 2014 Nov;63 Suppl 1:i10. doi: 10.1093/jmicro/dfu089.

PMID:
25359798
9.

Excitonic complexes in GaN/(Al,Ga)N quantum dots.

Elmaghraoui D, Triki M, Jaziri S, Muñoz-Matutano G, Leroux M, Martinez-Pastor J.

J Phys Condens Matter. 2017 Mar 15;29(10):105302. doi: 10.1088/1361-648X/aa57d5. Epub 2017 Feb 1.

PMID:
28145893
10.

InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm.

Strauss M, Höfling S, Forchel A.

Nanotechnology. 2009 Dec 16;20(50):505601. doi: 10.1088/0957-4484/20/50/505601. Epub 2009 Nov 12.

PMID:
19907066
11.

A semiconductor source of triggered entangled photon pairs.

Stevenson RM, Young RJ, Atkinson P, Cooper K, Ritchie DA, Shields AJ.

Nature. 2006 Jan 12;439(7073):179-82.

PMID:
16407947
12.

Size-dependent properties of single InAs quantum dots grown in nanoimprint lithography patterned GaAs pits.

Tommila J, Schramm A, Hakkarainen TV, Dumitrescu M, Guina M.

Nanotechnology. 2013 Jun 14;24(23):235204. doi: 10.1088/0957-4484/24/23/235204. Epub 2013 May 15.

PMID:
23676532
13.

Theory of strain tuning fine structure splitting in self-assembled InAs/GaAs quantum dots.

Wang J, Guo GC, He L.

J Phys Condens Matter. 2014 Nov 26;26(47):475301. doi: 10.1088/0953-8984/26/47/475301. Epub 2014 Oct 23.

PMID:
25339242
14.

Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

Chen Y, Zhang J, Zopf M, Jung K, Zhang Y, Keil R, Ding F, Schmidt OG.

Nat Commun. 2016 Jan 27;7:10387. doi: 10.1038/ncomms10387.

15.

Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.

Guimard D, Ishida M, Bordel D, Li L, Nishioka M, Tanaka Y, Ekawa M, Sudo H, Yamamoto T, Kondo H, Sugawara M, Arakawa Y.

Nanotechnology. 2010 Mar 12;21(10):105604. doi: 10.1088/0957-4484/21/10/105604. Epub 2010 Feb 16.

PMID:
20160334
16.

Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions.

Keil R, Zopf M, Chen Y, Höfer B, Zhang J, Ding F, Schmidt OG.

Nat Commun. 2017 May 26;8:15501. doi: 10.1038/ncomms15501.

17.

Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy.

Rödel R, Bauer A, Kremling S, Reitzenstein S, Höfling S, Kamp M, Worschech L, Forchel A.

Nanotechnology. 2012 Jan 13;23(1):015605. doi: 10.1088/0957-4484/23/1/015605. Epub 2011 Dec 8.

PMID:
22156168
18.

Computational study on the in-plane symmetry of electron wavefunctions in self-assembled InAs/GaAs quantum dots.

Mukai K, Watanabe K, Nakashima K.

J Nanosci Nanotechnol. 2009 Jan;9(1):108-14.

PMID:
19441284
19.

Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates.

Skiba-Szymanska J, Jamil A, Farrer I, Ward MB, Nicoll CA, Ellis DJ, Griffiths JP, Anderson D, Jones GA, Ritchie DA, Shields AJ.

Nanotechnology. 2011 Feb 11;22(6):065302. doi: 10.1088/0957-4484/22/6/065302. Epub 2011 Jan 7.

PMID:
21212488
20.

Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

Zhang J, Zallo E, Höfer B, Chen Y, Keil R, Zopf M, Böttner S, Ding F, Schmidt OG.

Nano Lett. 2017 Jan 11;17(1):501-507. doi: 10.1021/acs.nanolett.6b04539. Epub 2016 Dec 21.

PMID:
27995799

Supplemental Content

Support Center