Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae.

Zadrag-Tecza R, Kwolek-Mirek M, Bartosz G, Bilinski T.

Biogerontology. 2009 Aug;10(4):481-8. doi: 10.1007/s10522-008-9192-0. Epub 2008 Nov 5.

PMID:
18985429
2.
3.

Requirement of glutathione for Sod1 activation during lifespan extension.

Mannarino SC, Vilela LF, Brasil AA, Aranha JN, Moradas-Ferreira P, Pereira MD, Costa V, Eleutherio EC.

Yeast. 2011 Jan;28(1):19-25. doi: 10.1002/yea.1817. Epub 2010 Aug 24.

4.

Cu,Zn-superoxide dismutase of Saccharomyces cerevisiae is required for resistance to hyperosmosis.

Garay-Arroyo A, Lledías F, Hansberg W, Covarrubias AA.

FEBS Lett. 2003 Mar 27;539(1-3):68-72.

5.

Replicative aging of the yeast does not require DNA replication.

Zadrag R, Bartosz G, Bilinski T.

Biochem Biophys Res Commun. 2005 Jul 22;333(1):138-41.

PMID:
15939403
6.
7.

Hypothesis: cell volume limits cell divisions.

Biliński T, Bartosz G.

Acta Biochim Pol. 2006;53(4):833-5. Epub 2006 Nov 14.

8.

The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway.

Heeren G, Jarolim S, Laun P, Rinnerthaler M, Stolze K, Perrone GG, Kohlwein SD, Nohl H, Dawes IW, Breitenbach M.

FEMS Yeast Res. 2004 Nov;5(2):157-67.

9.

Effect of stress on the life span of the yeast Saccharomyces cerevisiae.

Swieciło A, Krawiec Z, Wawryn J, Bartosz G, Biliński T.

Acta Biochim Pol. 2000;47(2):355-64.

10.

Effect of Cu,Zn superoxide dismutase disruption mutation on replicative senescence in Saccharomyces cerevisiae.

Barker MG, Brimage LJ, Smart KA.

FEMS Microbiol Lett. 1999 Aug 15;177(2):199-204.

11.

Mutations in the RAD27 and SGS1 genes differentially affect the chronological and replicative lifespan of yeast cells growing on glucose and glycerol.

Ringvoll J, Uldal L, Roed MA, Reite K, Baynton K, Klungland A, Eide L.

FEMS Yeast Res. 2007 Sep;7(6):848-59. Epub 2007 May 16.

12.

Ascorbate restores lifespan of superoxide-dismutase deficient yeast.

Krzepiłko A, Swieciło A, Wawryn J, Zadrag R, Kozioł S, Bartosz G, Biliński T.

Free Radic Res. 2004 Sep;38(9):1019-24.

PMID:
15621721
13.
14.

Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.

Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD.

FEBS Lett. 2004 Jan 16;557(1-3):136-42.

15.

Anti-aging effects of hesperidin on Saccharomyces cerevisiae via inhibition of reactive oxygen species and UTH1 gene expression.

Sun K, Xiang L, Ishihara S, Matsuura A, Sakagami Y, Qi J.

Biosci Biotechnol Biochem. 2012;76(4):640-5. Epub 2012 Apr 7.

16.
17.

Relationship between the replicative age and cell volume in Saccharomyces cerevisiae.

Zadrag R, Kwolek-Mirek M, Bartosz G, Bilinski T.

Acta Biochim Pol. 2006;53(4):747-51. Epub 2006 Nov 14.

18.

Asymmetric inheritance of oxidatively damaged proteins during cytokinesis.

Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T.

Science. 2003 Mar 14;299(5613):1751-3. Epub 2003 Feb 27.

19.

Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver.

Ciriolo MR, Civitareale P, Carrì MT, De Martino A, Galiazzo F, Rotilio G.

J Biol Chem. 1994 Oct 14;269(41):25783-7.

20.

Limited effectiveness of antioxidants in the protection of yeast defective in antioxidant proteins.

Lewinska A, Bilinski T, Bartosz G.

Free Radic Res. 2004 Nov;38(11):1159-65.

PMID:
15621692

Supplemental Content

Support Center