Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise.

Zwetsloot KA, Westerkamp LM, Holmes BF, Gavin TP.

J Physiol. 2008 Dec 15;586(24):6021-35. doi: 10.1113/jphysiol.2008.159871. Epub 2008 Oct 27.

2.

PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice.

Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JF, Hidalgo J, Pilegaard H.

Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E92-103. doi: 10.1152/ajpendo.00076.2009. Epub 2009 Apr 28.

3.

Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise.

Miura S, Kai Y, Kamei Y, Bruce CR, Kubota N, Febbraio MA, Kadowaki T, Ezaki O.

Am J Physiol Endocrinol Metab. 2009 Jan;296(1):E47-55. doi: 10.1152/ajpendo.90690.2008. Epub 2008 Oct 21.

4.

Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.

Jørgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA, Pilegaard H.

FASEB J. 2005 Jul;19(9):1146-8. Epub 2005 May 5.

PMID:
15878932
5.

AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle.

Holmes BF, Lang DB, Birnbaum MJ, Mu J, Dohm GL.

Am J Physiol Endocrinol Metab. 2004 Oct;287(4):E739-43. Epub 2004 May 27.

6.

AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle.

Ouchi N, Shibata R, Walsh K.

Circ Res. 2005 Apr 29;96(8):838-46. Epub 2005 Mar 24.

7.

Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice.

Kivelä R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H.

Cardiovasc Diabetol. 2008 May 1;7:13. doi: 10.1186/1475-2840-7-13.

8.

Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women.

Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM, Hickner RC, Pofahl WE, Gavin TP.

J Appl Physiol (1985). 2005 Nov;99(5):1872-9. Epub 2005 Jul 14.

9.

Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis.

Olfert IM, Howlett RA, Wagner PD, Breen EC.

Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1059-67. doi: 10.1152/ajpregu.00347.2010. Epub 2010 Aug 4.

10.

Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β₂-adrenergic receptor activation.

Tadaishi M, Miura S, Kai Y, Kawasaki E, Koshinaka K, Kawanaka K, Nagata J, Oishi Y, Ezaki O.

Am J Physiol Endocrinol Metab. 2011 Feb;300(2):E341-9. doi: 10.1152/ajpendo.00400.2010. Epub 2010 Nov 23.

11.

Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.

Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JF, Richter EA.

Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E331-9. Epub 2006 Sep 5.

12.

Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice.

Maarbjerg SJ, Jørgensen SB, Rose AJ, Jeppesen J, Jensen TE, Treebak JT, Birk JB, Schjerling P, Wojtaszewski JF, Richter EA.

Am J Physiol Endocrinol Metab. 2009 Oct;297(4):E924-34. doi: 10.1152/ajpendo.90653.2008. Epub 2009 Aug 4.

13.

Role of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle.

Sasaki T, Nakata R, Inoue H, Shimizu M, Inoue J, Sato R.

Am J Physiol Endocrinol Metab. 2014 May 1;306(9):E1085-92. doi: 10.1152/ajpendo.00691.2013. Epub 2014 Mar 18.

14.
15.

Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice.

Audet GN, Meek TH, Garland T Jr, Olfert IM.

Exp Physiol. 2011 Nov;96(11):1138-50. doi: 10.1113/expphysiol.2011.057711. Epub 2011 Jul 31.

16.

Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle.

Takimoto M, Takeyama M, Hamada T.

Metabolism. 2013 Nov;62(11):1633-40. doi: 10.1016/j.metabol.2013.06.010. Epub 2013 Jul 23.

PMID:
23886299
17.

Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm.

Miura S, Kai Y, Tadaishi M, Tokutake Y, Sakamoto K, Bruce CR, Febbraio MA, Kita K, Chohnan S, Ezaki O.

Am J Physiol Endocrinol Metab. 2013 Jul 15;305(2):E213-29. doi: 10.1152/ajpendo.00114.2013. Epub 2013 May 21.

18.

Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia.

Olfert IM, Breen EC, Mathieu-Costello O, Wagner PD.

J Appl Physiol (1985). 2001 Sep;91(3):1176-84.

19.

AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.

Dzamko N, Schertzer JD, Ryall JG, Steel R, Macaulay SL, Wee S, Chen ZP, Michell BJ, Oakhill JS, Watt MJ, Jørgensen SB, Lynch GS, Kemp BE, Steinberg GR.

J Physiol. 2008 Dec 1;586(23):5819-31. doi: 10.1113/jphysiol.2008.159814. Epub 2008 Oct 9.

20.

Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle.

Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF.

J Biol Chem. 2004 Jan 9;279(2):1070-9. Epub 2003 Oct 21.

Supplemental Content

Support Center