Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Conserved residues in the HAMP domain define a new family of proposed bipartite energy taxis receptors.

Elliott KT, Zhulin IB, Stuckey JA, DiRita VJ.

J Bacteriol. 2009 Jan;191(1):375-87. doi: 10.1128/JB.00578-08. Epub 2008 Oct 24.

2.

Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni.

Elliott KT, Dirita VJ.

Mol Microbiol. 2008 Sep;69(5):1091-103. doi: 10.1111/j.1365-2958.2008.06357.x. Epub 2008 Jul 10.

3.

Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer.

Watts KJ, Ma Q, Johnson MS, Taylor BL.

J Bacteriol. 2004 Nov;186(21):7440-9.

4.

Structure-function relationships in the HAMP and proximal signaling domains of the aerotaxis receptor Aer.

Watts KJ, Johnson MS, Taylor BL.

J Bacteriol. 2008 Mar;190(6):2118-27. doi: 10.1128/JB.01858-07. Epub 2008 Jan 18.

5.

Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling.

Airola MV, Huh D, Sukomon N, Widom J, Sircar R, Borbat PP, Freed JH, Watts KJ, Crane BR.

J Mol Biol. 2013 Mar 11;425(5):886-901. doi: 10.1016/j.jmb.2012.12.011. Epub 2012 Dec 26.

7.

Minimal requirements for oxygen sensing by the aerotaxis receptor Aer.

Watts KJ, Johnson MS, Taylor BL.

Mol Microbiol. 2006 Feb;59(4):1317-26.

8.

Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni.

Reuter M, van Vliet AH.

PLoS One. 2013;8(1):e54390. doi: 10.1371/journal.pone.0054390. Epub 2013 Jan 29.

9.
10.

PAS/poly-HAMP signalling in Aer-2, a soluble haem-based sensor.

Watts KJ, Taylor BL, Johnson MS.

Mol Microbiol. 2011 Feb;79(3):686-99. doi: 10.1111/j.1365-2958.2010.07477.x. Epub 2010 Dec 7.

11.

Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor, Aer.

Campbell AJ, Watts KJ, Johnson MS, Taylor BL.

Mol Microbiol. 2010 Aug;77(3):575-86. doi: 10.1111/j.1365-2958.2010.07231.x. Epub 2010 Jun 1.

12.

Methylation-independent aerotaxis mediated by the Escherichia coli Aer protein.

Bibikov SI, Miller AC, Gosink KK, Parkinson JS.

J Bacteriol. 2004 Jun;186(12):3730-7.

13.

Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor.

Samanta D, Widom J, Borbat PP, Freed JH, Crane BR.

J Biol Chem. 2016 Dec 9;291(50):25809-25814. Epub 2016 Nov 1.

14.

Different conformations of the kinase-on and kinase-off signaling states in the Aer HAMP domain.

Watts KJ, Johnson MS, Taylor BL.

J Bacteriol. 2011 Aug;193(16):4095-103. doi: 10.1128/JB.01069-10. Epub 2011 Jun 10.

15.
16.

The HAMP domain structure implies helix rotation in transmembrane signaling.

Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M.

Cell. 2006 Sep 8;126(5):929-40.

18.

Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer.

Garcia D, Watts KJ, Johnson MS, Taylor BL.

Mol Microbiol. 2016 Apr;100(1):156-72. doi: 10.1111/mmi.13308. Epub 2016 Feb 2.

19.

The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior.

Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM, Zhulin IB, Taylor BL.

Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10541-6.

20.

Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer.

Watts KJ, Sommer K, Fry SL, Johnson MS, Taylor BL.

J Bacteriol. 2006 Mar;188(6):2154-62. Erratum in: J Bacteriol. 2006 May;188(9):3429.

Supplemental Content

Support Center