Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.
2.

Scoring clustering solutions by their biological relevance.

Gat-Viks I, Sharan R, Shamir R.

Bioinformatics. 2003 Dec 12;19(18):2381-9.

3.

Distance-based clustering of CGH data.

Liu J, Mohammed J, Carter J, Ranka S, Kahveci T, Baudis M.

Bioinformatics. 2006 Aug 15;22(16):1971-8.

4.

Clustering analysis of SAGE transcription profiles using a Poisson approach.

Huang H, Cai L, Wong WH.

Methods Mol Biol. 2008;387:185-98.

PMID:
18287632
5.

Application of Multi-SOM clustering approach to macrophage gene expression analysis.

Ghouila A, Yahia SB, Malouche D, Jmel H, Laouini D, Guerfali FZ, Abdelhak S.

Infect Genet Evol. 2009 May;9(3):328-36. doi: 10.1016/j.meegid.2008.09.009.

PMID:
18992849
6.
7.

Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach.

Pihur V, Datta S, Datta S.

Bioinformatics. 2007 Jul 1;23(13):1607-15.

8.

A practical comparison of two K-Means clustering algorithms.

Wilkin GA, Huang X.

BMC Bioinformatics. 2008 May 28;9 Suppl 6:S19. doi: 10.1186/1471-2105-9-S6-S19.

9.

Rank-based clustering analysis for the time-course microarray data.

Yi SG, Joo YJ, Park T.

J Bioinform Comput Biol. 2009 Feb;7(1):75-91.

PMID:
19226661
10.

PK-means: A new algorithm for gene clustering.

Du Z, Wang Y, Ji Z.

Comput Biol Chem. 2008 Aug;32(4):243-7. doi: 10.1016/j.compbiolchem.2008.03.020.

PMID:
18502690
11.

Computing the maximum similarity bi-clusters of gene expression data.

Liu X, Wang L.

Bioinformatics. 2007 Jan 1;23(1):50-6.

12.

SiMCAL 1 algorithm for analysis of gene expression data related to the phosphatidylserine receptor.

Dvorkin D, Fadok V, Cios K.

Artif Intell Med. 2005 Sep-Oct;35(1-2):49-60.

PMID:
16099148
13.

A hierarchical unsupervised growing neural network for clustering gene expression patterns.

Herrero J, Valencia A, Dopazo J.

Bioinformatics. 2001 Feb;17(2):126-36.

14.

Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles.

Bhattacharya A, De RK.

Bioinformatics. 2008 Jun 1;24(11):1359-66. doi: 10.1093/bioinformatics/btn133.

15.

V-cluster algorithm: a new algorithm for clustering molecules based upon numeric data.

Xu J, Zhang Q, Shih CK.

Mol Divers. 2006 Aug;10(3):463-78.

PMID:
16896541
16.

A novel approach for discovering overlapping clusters in gene expression data.

Ma PC, Chan KC.

IEEE Trans Biomed Eng. 2009 Jul;56(7):1803-9. doi: 10.1109/TBME.2009.2015055.

PMID:
19237334
17.

A hierarchical clustering algorithm for MIMD architecture.

Du Z, Lin F.

Comput Biol Chem. 2004 Dec;28(5-6):417-9.

PMID:
15556483
18.

Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana.

Kiddle SJ, Windram OP, McHattie S, Mead A, Beynon J, Buchanan-Wollaston V, Denby KJ, Mukherjee S.

Bioinformatics. 2010 Feb 1;26(3):355-62. doi: 10.1093/bioinformatics/btp673.

19.

Curve-based clustering of time course gene expression data using self-organizing maps.

Chen X.

J Bioinform Comput Biol. 2009 Aug;7(4):645-61.

PMID:
19634196
20.

A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets.

Sharma A, Podolsky R, Zhao J, McIndoe RA.

Bioinformatics. 2009 May 1;25(9):1152-7. doi: 10.1093/bioinformatics/btp123.

Items per page

Supplemental Content

Support Center