Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Dynamics of shear-induced ATP release from red blood cells.

Wan J, Ristenpart WD, Stone HA.

Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16432-7. doi: 10.1073/pnas.0805779105. Epub 2008 Oct 15.

2.

Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA.

Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10986-91. doi: 10.1073/pnas.1101315108. Epub 2011 Jun 20.

3.

Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.

Borghi N, Brochard-Wyart F.

Biophys J. 2007 Aug 15;93(4):1369-79. Epub 2007 May 25.

4.

Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects.

Gov NS, Safran SA.

Biophys J. 2005 Mar;88(3):1859-74. Epub 2004 Dec 21.

5.

Microconfined flow behavior of red blood cells.

Tomaiuolo G, Lanotte L, D'Apolito R, Cassinese A, Guido S.

Med Eng Phys. 2016 Jan;38(1):11-6. doi: 10.1016/j.medengphy.2015.05.007. Epub 2015 Jun 10.

PMID:
26071649
6.

Deformation-induced ATP release from red blood cells requires CFTR activity.

Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ.

Am J Physiol. 1998 Nov;275(5 Pt 2):H1726-32.

7.

Piezo1 regulates mechanotransductive release of ATP from human RBCs.

Cinar E, Zhou S, DeCourcey J, Wang Y, Waugh RE, Wan J.

Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11783-8. doi: 10.1073/pnas.1507309112. Epub 2015 Sep 8.

8.

Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.

Mairbäurl H, Ruppe FA, Bärtsch P.

Med Sci Sports Exerc. 2013 Oct;45(10):1941-7. doi: 10.1249/MSS.0b013e318296193a.

PMID:
23575515
9.

Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.

Lockwood SY, Erkal JL, Spence DM.

Nitric Oxide. 2014 Apr 30;38:1-7. doi: 10.1016/j.niox.2014.02.003. Epub 2014 Feb 12.

PMID:
24530476
10.

A computational model of a microfluidic device to measure the dynamics of oxygen-dependent ATP release from erythrocytes.

Sove RJ, Ghonaim N, Goldman D, Ellis CG.

PLoS One. 2013 Nov 27;8(11):e81537. doi: 10.1371/journal.pone.0081537. eCollection 2013.

11.

Red blood cell dynamics: from cell deformation to ATP release.

Wan J, Forsyth AM, Stone HA.

Integr Biol (Camb). 2011 Oct;3(10):972-81. doi: 10.1039/c1ib00044f. Epub 2011 Sep 21. Review.

PMID:
21935538
12.

MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.

Chang HY, Li X, Li H, Karniadakis GE.

PLoS Comput Biol. 2016 Oct 28;12(10):e1005173. doi: 10.1371/journal.pcbi.1005173. eCollection 2016 Oct.

13.

Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.

Sprague RS, Stephenson AH, Ellsworth ML, Keller C, Lonigro AJ.

Exp Biol Med (Maywood). 2001 May;226(5):434-9.

PMID:
11393171
14.

The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.

Forsyth AM, Braunmüller S, Wan J, Franke T, Stone HA.

Microvasc Res. 2012 May;83(3):347-51. doi: 10.1016/j.mvr.2012.02.004. Epub 2012 Feb 14.

PMID:
22349292
15.

Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.

Sakota D, Sakamoto R, Yokoyama N, Kobayashi M, Takatani S.

Artif Organs. 2009 Sep;33(9):733-9. doi: 10.1111/j.1525-1594.2009.00898.x.

PMID:
19775265
16.

Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking.

Wang Y, Giebink A, Spence DM.

Integr Biol (Camb). 2014 Jan;6(1):65-75. doi: 10.1039/c3ib40187a.

PMID:
24292633
17.

Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes.

Faris A, Spence DM.

Analyst. 2008 May;133(5):678-82. doi: 10.1039/b719990b. Epub 2008 Mar 31.

PMID:
18427692
18.

Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells.

Yamamoto K, Shimizu N, Obi S, Kumagaya S, Taketani Y, Kamiya A, Ando J.

Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1646-53. Epub 2007 Jun 1.

19.

Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release.

Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ.

Am J Physiol Cell Physiol. 2001 Oct;281(4):C1158-64.

20.

Hemolysis is a primary ATP-release mechanism in human erythrocytes.

Sikora J, Orlov SN, Furuya K, Grygorczyk R.

Blood. 2014 Sep 25;124(13):2150-7. doi: 10.1182/blood-2014-05-572024. Epub 2014 Aug 5.

Supplemental Content

Support Center