Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Identification of drought-responsive genes in roots of upland rice (Oryza sativa L).

Rabello AR, Guimarães CM, Rangel PH, da Silva FR, Seixas D, de Souza E, Brasileiro AC, Spehar CR, Ferreira ME, Mehta A.

BMC Genomics. 2008 Oct 15;9:485. doi: 10.1186/1471-2164-9-485.

2.

Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa).

Silveira RD, Abreu FR, Mamidi S, McClean PE, Vianello RP, Lanna AC, Carneiro NP, Brondani C.

Genet Mol Res. 2015 Jul 27;14(3):8181-200. doi: 10.4238/2015.July.27.6.

3.

De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

Tian XJ, Long Y, Wang J, Zhang JW, Wang YY, Li WM, Peng YF, Yuan QH, Pei XW.

PLoS One. 2015 Jul 2;10(7):e0131455. doi: 10.1371/journal.pone.0131455. eCollection 2015.

4.
5.

Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

Shi L, Guo M, Ye N, Liu Y, Liu R, Xia Y, Cui S, Zhang J.

Plant Cell Physiol. 2015 May;56(5):951-64. doi: 10.1093/pcp/pcv022. Epub 2015 Mar 2.

PMID:
25735958
6.

Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice.

Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM.

Transgenic Res. 2014 Jun;23(3):421-39. doi: 10.1007/s11248-013-9776-6. Epub 2014 Jan 8.

7.

Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress.

Paul S, Gayen D, Datta SK, Datta K.

Plant Sci. 2015 May;234:133-43. doi: 10.1016/j.plantsci.2015.02.006. Epub 2015 Feb 18.

PMID:
25804816
8.

Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress.

Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S.

BMC Plant Biol. 2011 Dec 2;11:174. doi: 10.1186/1471-2229-11-174.

9.

A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.).

Vinnakota R, Ramakrishnan AM, Samdani A, Venugopal MA, Ram BS, Krishnan SN, Murugesan D, Sankaranarayanan K.

Protoplasma. 2016 Nov;253(6):1593-1597. Epub 2015 Dec 2.

PMID:
26631017
10.

Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

Grondin A, Mauleon R, Vadez V, Henry A.

Plant Cell Environ. 2016 Feb;39(2):347-65. doi: 10.1111/pce.12616. Epub 2015 Nov 24.

PMID:
26226878
11.

Expression profiling of rice cultivars differing in their tolerance to long-term drought stress.

Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Köhl KI.

Plant Mol Biol. 2009 Jan;69(1-2):133-53. doi: 10.1007/s11103-008-9412-7. Epub 2008 Oct 19.

12.

Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes.

Pucholt P, Sjödin P, Weih M, Rönnberg-Wästljung AC, Berlin S.

BMC Plant Biol. 2015 Oct 12;15:244. doi: 10.1186/s12870-015-0630-2. Erratum in: BMC Plant Biol. 2015;15:285.

13.

Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit.

Pantalião GF, Narciso M, Guimarães C, Castro A, Colombari JM, Breseghello F, Rodrigues L, Vianello RP, Borba TO, Brondani C.

Genetica. 2016 Dec;144(6):651-664. Epub 2016 Oct 8.

PMID:
27722804
14.

Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress.

Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z.

BMC Genomics. 2014 Nov 26;15:1026. doi: 10.1186/1471-2164-15-1026.

15.

Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China.

Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L.

PLoS One. 2014 Oct 6;9(10):e106352. doi: 10.1371/journal.pone.0106352. eCollection 2014.

16.

Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice.

Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z.

BMC Genomics. 2011 Mar 16;12:149. doi: 10.1186/1471-2164-12-149.

17.

Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage.

Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H.

J Plant Physiol. 2012 Mar 1;169(4):336-44. doi: 10.1016/j.jplph.2011.10.010. Epub 2011 Dec 3.

PMID:
22137606
18.

Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit.

Rabello FR, Villeth GR, Rabello AR, Rangel PH, Guimarães CM, Huergo LF, Souza EM, Pedrosa FO, Ferreira ME, Mehta A.

Protein J. 2014 Jun;33(3):221-30. doi: 10.1007/s10930-014-9554-1.

PMID:
24652039
19.

Identification of functionally important microRNAs from rice inflorescence at heading stage of a qDTY4.1-QTL bearing Near Isogenic Line under drought conditions.

Cheah BH, Jadhao S, Vasudevan M, Wickneswari R, Nadarajah K.

PLoS One. 2017 Oct 18;12(10):e0186382. doi: 10.1371/journal.pone.0186382. eCollection 2017.

20.

Identification of gene modules associated with drought response in rice by network-based analysis.

Zhang L, Yu S, Zuo K, Luo L, Tang K.

PLoS One. 2012;7(5):e33748. doi: 10.1371/journal.pone.0033748. Epub 2012 May 25.

Supplemental Content

Support Center