Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data.

Weiss S, Carapito C, Cleiss J, Koechler S, Turlin E, Coppee JY, Heymann M, Kugler V, Stauffert M, Cruveiller S, Médigue C, Van Dorsselaer A, Bertin PN, Arsène-Ploetze F.

Biochimie. 2009 Feb;91(2):192-203. doi: 10.1016/j.biochi.2008.07.013. Epub 2008 Sep 25.

PMID:
18852016
2.

Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans.

Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F, Hommais F, Lièvremont D, Arsène-Ploetze F, Coppée JY, Bertin PN.

BMC Microbiol. 2010 Feb 18;10:53. doi: 10.1186/1471-2180-10-53. Erratum in: BMC Microbiol. 2017 Mar 28;17 (1):74.

3.

Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans.

Marchal M, Briandet R, Koechler S, Kammerer B, Bertin PN.

Microbiology. 2010 Aug;156(Pt 8):2336-42. doi: 10.1099/mic.0.039313-0. Epub 2010 May 6.

PMID:
20447996
4.

Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans.

Cleiss-Arnold J, Koechler S, Proux C, Fardeau ML, Dillies MA, Coppee JY, Arsène-Ploetze F, Bertin PN.

BMC Genomics. 2010 Dec 17;11:709. doi: 10.1186/1471-2164-11-709.

5.

Arsenite oxidation by Pseudomonas arsenicoxydans immobilized on zeolite and its potential biotechnological application.

Valenzuela C, Moraga R, Leon C, Smith CT, Mondaca MA, Campos VL.

Bull Environ Contam Toxicol. 2015 May;94(5):667-73. doi: 10.1007/s00128-015-1495-7. Epub 2015 Feb 12.

PMID:
25673523
6.

Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation.

Chourey K, Thompson MR, Shah M, Zhang B, Verberkmoes NC, Thompson DK, Hettich RL.

J Proteome Res. 2009 Jan;8(1):59-71. doi: 10.1021/pr800776d.

PMID:
19118451
7.

Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice.

Loveland-Curtze J, Miteva VI, Brenchley JE.

Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1272-7. doi: 10.1099/ijs.0.001685-0.

PMID:
19502300
8.

Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome.

Carapito C, Muller D, Turlin E, Koechler S, Danchin A, Van Dorsselaer A, Leize-Wagner E, Bertin PN, Lett MC.

Biochimie. 2006 Jun;88(6):595-606. Epub 2005 Dec 5.

PMID:
16380199
9.

Draft genome sequence of Halomonas sp. strain HAL1, a moderately halophilic arsenite-oxidizing bacterium isolated from gold-mine soil.

Lin Y, Fan H, Hao X, Johnstone L, Hu Y, Wei G, Alwathnani HA, Wang G, Rensing C.

J Bacteriol. 2012 Jan;194(1):199-200. doi: 10.1128/JB.06359-11.

10.
11.

Tribolium castaneum larval gut transcriptome and proteome: A resource for the study of the coleopteran gut.

Morris K, Lorenzen MD, Hiromasa Y, Tomich JM, Oppert C, Elpidina EN, Vinokurov K, Jurat-Fuentes JL, Fabrick J, Oppert B.

J Proteome Res. 2009 Aug;8(8):3889-98. doi: 10.1021/pr900168z.

PMID:
19545177
12.

Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins.

Hashimoto M, Toorchi M, Matsushita K, Iwasaki Y, Komatsu S.

Protein Pept Lett. 2009;16(6):685-97.

PMID:
19519530
13.

Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage.

Li JY, Chen X, Hosseini Moghaddam SH, Chen M, Wei H, Zhong BX.

Insect Mol Biol. 2009 Oct;18(5):649-60. doi: 10.1111/j.1365-2583.2009.00903.x.

PMID:
19754742
14.

Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1.

Zargar K, Hoeft S, Oremland R, Saltikov CW.

J Bacteriol. 2010 Jul;192(14):3755-62. doi: 10.1128/JB.00244-10. Epub 2010 May 7.

15.

A new role for sulfur in arsenic cycling.

Fisher JC, Wallschläger D, Planer-Friedrich B, Hollibaugh JT.

Environ Sci Technol. 2008 Jan 1;42(1):81-5.

PMID:
18350879
16.

Comparison of two anoxia models in rainbow trout cells by a 2-DE and MS/MS-based proteome approach.

Wulff T, Hoffmann EK, Roepstorff P, Jessen F.

Proteomics. 2008 May;8(10):2035-44. doi: 10.1002/pmic.200700944.

PMID:
18491317
17.

Unraveling age-dependent variation of the mitochondrial proteome.

Dencher NA, Goto S, Reifschneider NH, Sugawa M, Krause F.

Ann N Y Acad Sci. 2006 May;1067:116-9. Review.

PMID:
16803976
18.

Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.

Cai L, Rensing C, Li X, Wang G.

Appl Microbiol Biotechnol. 2009 Jun;83(4):715-25. doi: 10.1007/s00253-009-1929-4. Epub 2009 Mar 13.

PMID:
19283378
19.

Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile.

Campos VL, Escalante G, Yañez J, Zaror CA, Mondaca MA.

J Basic Microbiol. 2009 Sep;49 Suppl 1:S93-7. doi: 10.1002/jobm.200900028.

PMID:
19718679
20.

Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment.

Handley KM, Héry M, Lloyd JR.

Int J Syst Evol Microbiol. 2009 Apr;59(Pt 4):886-92. doi: 10.1099/ijs.0.003145-0. Erratum in: Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1850.

PMID:
19329625

Supplemental Content

Support Center