Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 396

1.

Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system.

Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G, Ribeiro AL, Manganelli R, Riccardi G.

Tuberculosis (Edinb). 2009 Jan;89(1):84-90. doi: 10.1016/j.tube.2008.08.003. Epub 2008 Oct 11.

PMID:
18851927
2.

Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs.

Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD.

Microb Drug Resist. 2010 Mar;16(1):21-8. doi: 10.1089/mdr.2009.0054.

PMID:
20001742
3.

[Frontier of mycobacterium research--host vs. mycobacterium].

Okada M, Shirakawa T.

Kekkaku. 2005 Sep;80(9):613-29. Japanese.

PMID:
16245793
4.

Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth.

Ramón-García S, Martín C, Thompson CJ, Aínsa JA.

Antimicrob Agents Chemother. 2009 Sep;53(9):3675-82. doi: 10.1128/AAC.00550-09. Epub 2009 Jun 29.

5.

Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis: implications for treatment of tuberculosis.

Guardiola-Diaz HM, Foster LA, Mushrush D, Vaz AD.

Biochem Pharmacol. 2001 Jun 15;61(12):1463-70.

PMID:
11377375
6.

Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG.

Ramón-García S, Mick V, Dainese E, Martín C, Thompson CJ, De Rossi E, Manganelli R, Aínsa JA.

Antimicrob Agents Chemother. 2012 Apr;56(4):2074-83. doi: 10.1128/AAC.05946-11. Epub 2012 Jan 9.

7.

The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds.

Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS.

Tuberculosis (Edinb). 2004;84(3-4):263-74.

PMID:
15207496
8.

Macrophage-specific Mycobacterium tuberculosis genes: identification by green fluorescent protein and kanamycin resistance selection.

Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS.

Microbiology. 2007 Mar;153(Pt 3):659-66.

PMID:
17322185
9.

A novel differential expression system for gene modulation in Mycobacteria.

Fan XY, Ma H, Guo J, Li ZM, Cheng ZH, Guo SQ, Zhao GP.

Plasmid. 2009 Jan;61(1):39-46. doi: 10.1016/j.plasmid.2008.09.002. Epub 2008 Oct 25.

PMID:
18835406
10.

Role of mycobacterial efflux transporters in drug resistance: an unresolved question.

De Rossi E, Aínsa JA, Riccardi G.

FEMS Microbiol Rev. 2006 Jan;30(1):36-52. Review.

11.

Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis.

Danilchanka O, Mailaender C, Niederweis M.

Antimicrob Agents Chemother. 2008 Jul;52(7):2503-11. doi: 10.1128/AAC.00298-08. Epub 2008 May 5.

12.

Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice.

Srivastava V, Jain A, Srivastava BS, Srivastava R.

Tuberculosis (Edinb). 2008 May;88(3):171-7. Epub 2007 Dec 3.

PMID:
18054522
13.

The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol.

Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M, Hazbón MH, Harbacheuski R, Megjugorac NJ, Jacobs WR Jr, Holzenburg A, Sacchettini JC, Alland D.

Mol Microbiol. 2005 Mar;55(6):1829-40.

14.

Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in Mycobacterium tuberculosis.

Alahari A, Alibaud L, Trivelli X, Gupta R, Lamichhane G, Reynolds RC, Bishai WR, Guerardel Y, Kremer L.

Mol Microbiol. 2009 Mar;71(5):1263-77. doi: 10.1111/j.1365-2958.2009.06604.x. Epub 2009 Jan 15.

15.

MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212.

La Rosa V, Poce G, Canseco JO, Buroni S, Pasca MR, Biava M, Raju RM, Porretta GC, Alfonso S, Battilocchio C, Javid B, Sorrentino F, Ioerger TR, Sacchettini JC, Manetti F, Botta M, De Logu A, Rubin EJ, De Rossi E.

Antimicrob Agents Chemother. 2012 Jan;56(1):324-31. doi: 10.1128/AAC.05270-11. Epub 2011 Oct 24.

16.

Azole antifungals as novel chemotherapeutic agents against murine tuberculosis.

Ahmad Z, Sharma S, Khuller GK.

FEMS Microbiol Lett. 2006 Aug;261(2):181-6.

17.

Gene expression profiling analysis of Mycobacterium tuberculosis genes in response to salicylate.

Denkin S, Byrne S, Jie C, Zhang Y.

Arch Microbiol. 2005 Nov;184(3):152-7. Epub 2005 Nov 10.

PMID:
16175359
18.

Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium.

Zheng J, Cui S, Meng J.

J Antimicrob Chemother. 2009 Jan;63(1):95-102. doi: 10.1093/jac/dkn448. Epub 2008 Nov 4.

PMID:
18984645
19.

Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes.

McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW.

Microbiology. 2002 Oct;148(Pt 10):2937-49.

PMID:
12368427
20.

Antimycobacterial activity of usnic acid against resistant and susceptible strains of Mycobacterium tuberculosis and non-tuberculous mycobacteria.

Ramos DF, Almeida da Silva PE.

Pharm Biol. 2010 Mar;48(3):260-3. doi: 10.3109/13880200903085490.

PMID:
20645810

Supplemental Content

Support Center