Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Optical microcavities formed by semiconductor microtubes using a bottlelike geometry.

Strelow Ch, Rehberg H, Schultz CM, Welsch H, Heyn Ch, Heitmann D, Kipp T.

Phys Rev Lett. 2008 Sep 19;101(12):127403. Epub 2008 Sep 19.

PMID:
18851410
2.

Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators.

Dietrich K, Strelow C, Schliehe C, Heyn C, Stemmann A, Schwaiger S, Mendach S, Mews A, Weller H, Heitmann D, Kipp T.

Nano Lett. 2010 Feb 10;10(2):627-31. doi: 10.1021/nl9036966.

PMID:
20050673
3.

Characterization of azimuthal and longitudinal modes in rolled-up InGaAs/GaAs microtubes at telecom wavelengths.

Zhong Q, Tian Z, Dastjerdi MH, Mi Z, Plant DV.

Opt Express. 2013 Aug 12;21(16):18909-18. doi: 10.1364/OE.21.018909.

PMID:
23938803
4.

Optical modes in semiconductor microtube ring resonators.

Kipp T, Welsch H, Strelow Ch, Heyn Ch, Heitmann D.

Phys Rev Lett. 2006 Feb 24;96(7):077403. Epub 2006 Feb 24.

PMID:
16606141
5.

Selective polarization mode excitation in InGaAs/GaAs microtubes.

Tian Z, Veerasubramanian V, Bianucci P, Mi Z, Kirk AG, Plant DV.

Opt Lett. 2011 Sep 1;36(17):3506-8. doi: 10.1364/OL.36.003506.

PMID:
21886259
6.
7.

Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates.

Madani A, Kleinert M, Stolarek D, Zimmermann L, Ma L, Schmidt OG.

Opt Lett. 2015 Aug 15;40(16):3826-9. doi: 10.1364/OL.40.003826.

PMID:
26274670
8.

Sharp whispering-gallery modes in rolled-up vertical SiO2 microcavities with quality factors exceeding 5000.

Böttner S, Li S, Trommer J, Kiravittaya S, Schmidt OG.

Opt Lett. 2012 Dec 15;37(24):5136-8. doi: 10.1364/OL.37.005136.

PMID:
23258030
9.

Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications.

Huang G, Bolaños Quiñones VA, Ding F, Kiravittaya S, Mei Y, Schmidt OG.

ACS Nano. 2010 Jun 22;4(6):3123-30. doi: 10.1021/nn100456r.

PMID:
20527797
10.

Observation of higher order radial modes in atomic layer deposition reinforced rolled-up microtube ring resonators.

Trommer J, Böttner S, Li S, Kiravittaya S, Jorgensen MR, Schmidt OG.

Opt Lett. 2014 Nov 1;39(21):6335-8. doi: 10.1364/OL.39.006335.

PMID:
25361348
11.

Thermally controlled coupling of a rolled-up microtube integrated with a waveguide on a silicon electronic-photonic integrated circuit.

Zhong Q, Tian Z, Veerasubramanian V, Dastjerdi MH, Mi Z, Plant DV.

Opt Lett. 2014 May 1;39(9):2699-702. doi: 10.1364/OL.39.002699.

PMID:
24784081
12.
13.

Optical modulation of waveguiding in spiropyran-functionalized polydiacetylene microtube.

Xia H, Chen Y, Yang G, Zou G, Zhang Q, Zhang D, Wang P, Ming H.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15466-71. doi: 10.1021/am504082u. Epub 2014 Aug 19.

PMID:
25119286
14.

Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts.

Zhu H, Yu SF, Wang QJ, Shan CX, Su SC.

Opt Lett. 2013 May 1;38(9):1527-9. doi: 10.1364/OL.38.001527.

PMID:
23632540
15.

Dispersion-guided resonances in two-dimensional photonic-crystal-embedded microcavities.

Tsia K, Poon A.

Opt Express. 2004 Nov 15;12(23):5711-22.

PMID:
19488207
16.

Mode profile dispersion in the generalised nonlinear Schrödinger equation.

Laegsgaard J.

Opt Express. 2007 Nov 26;15(24):16110-23.

PMID:
19550900
17.

Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors.

Smith EJ, Schulze S, Kiravittaya S, Mei Y, Sanchez S, Schmidt OG.

Nano Lett. 2011 Oct 12;11(10):4037-42. doi: 10.1021/nl1036148. Epub 2010 Nov 24.

PMID:
21105718
18.

Strain effects and phase transitions in photonic resonator crystals.

Pier H, Kapon E, Moser M.

Nature. 2000 Oct 19;407(6806):880-3.

PMID:
11057660
19.

Tailoring of optical modes of semiconductor microcavities via metal and dielectric gratings.

Dong G, Zhang Y, Arshad Kamran M, Zou B.

Opt Lett. 2012 Dec 15;37(24):5085-7. doi: 10.1364/OL.37.005085.

PMID:
23258013
20.

Investigation of resonant modes in thin microcavities by using electromagnetic theory.

Wu JH, Liu AQ, Li HH.

Opt Lett. 2006 Aug 15;31(16):2438-40.

PMID:
16880848

Supplemental Content

Support Center