Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase.

Lee AQ, Streit BR, Zdilla MJ, Abu-Omar MM, DuBois JL.

Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15654-9. doi: 10.1073/pnas.0804279105. Epub 2008 Oct 7.

2.

Concerted dismutation of chlorite ion: water-soluble iron-porphyrins as first generation model complexes for chlorite dismutase.

Zdilla MJ, Lee AQ, Abu-Omar MM.

Inorg Chem. 2009 Mar 2;48(5):2260-8. doi: 10.1021/ic801681n.

PMID:
19138154
3.

Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase.

Goblirsch BR, Streit BR, Dubois JL, Wilmot CM.

J Biol Inorg Chem. 2010 Aug;15(6):879-88. doi: 10.1007/s00775-010-0651-0. Epub 2010 Apr 13.

4.

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase.

Sun S, Li ZS, Chen SL.

Dalton Trans. 2014 Jan 21;43(3):973-81. doi: 10.1039/c3dt52171k. Epub 2013 Oct 25.

PMID:
24162174
5.

Peroxidase-type reactions suggest a heterolytic/nucleophilic O-O joining mechanism in the heme-dependent chlorite dismutase.

Mayfield JA, Blanc B, Rodgers KR, Lukat-Rodgers GS, DuBois JL.

Biochemistry. 2013 Oct 8;52(40):6982-94. doi: 10.1021/bi4005599. Epub 2013 Sep 23.

6.

Mechanism of chlorite degradation to chloride and dioxygen by the enzyme chlorite dismutase.

Schaffner I, Hofbauer S, Krutzler M, Pirker KF, Furtmüller PG, Obinger C.

Arch Biochem Biophys. 2015 May 15;574:18-26. doi: 10.1016/j.abb.2015.02.031. Epub 2015 Mar 4. Review.

7.

How active-site protonation state influences the reactivity and ligation of the heme in chlorite dismutase.

Streit BR, Blanc B, Lukat-Rodgers GS, Rodgers KR, DuBois JL.

J Am Chem Soc. 2010 Apr 28;132(16):5711-24. doi: 10.1021/ja9082182.

8.

Understanding the roles of strictly conserved tryptophan residues in O2 producing chlorite dismutases.

Blanc B, Rodgers KR, Lukat-Rodgers GS, DuBois JL.

Dalton Trans. 2013 Mar 7;42(9):3156-69. doi: 10.1039/c2dt32312e. Epub 2012 Dec 17.

9.

Transiently produced hypochlorite is responsible for the irreversible inhibition of chlorite dismutase.

Hofbauer S, Gruber C, Pirker KF, Sündermann A, Schaffner I, Jakopitsch C, Oostenbrink C, Furtmüller PG, Obinger C.

Biochemistry. 2014 May 20;53(19):3145-57. doi: 10.1021/bi500401k. Epub 2014 May 6.

10.

Manipulating conserved heme cavity residues of chlorite dismutase: effect on structure, redox chemistry, and reactivity.

Hofbauer S, Gysel K, Bellei M, Hagmüller A, Schaffner I, Mlynek G, Kostan J, Pirker KF, Daims H, Furtmüller PG, Battistuzzi G, Djinović-Carugo K, Obinger C.

Biochemistry. 2014 Jan 14;53(1):77-89. doi: 10.1021/bi401042z. Epub 2014 Jan 3.

11.

Structural and functional characterisation of the chlorite dismutase from the nitrite-oxidizing bacterium "Candidatus Nitrospira defluvii": identification of a catalytically important amino acid residue.

Kostan J, Sjöblom B, Maixner F, Mlynek G, Furtmüller PG, Obinger C, Wagner M, Daims H, Djinović-Carugo K.

J Struct Biol. 2010 Dec;172(3):331-42. doi: 10.1016/j.jsb.2010.06.014. Epub 2010 Jun 22.

PMID:
20600954
12.

Investigation of ion binding in chlorite dismutases by means of molecular dynamics simulations.

Sündermann A, Reif MM, Hofbauer S, Obinger C, Oostenbrink C.

Biochemistry. 2014 Jul 29;53(29):4869-79. doi: 10.1021/bi500467h. Epub 2014 Jul 14.

13.

Chlorite dismutases - a heme enzyme family for use in bioremediation and generation of molecular oxygen.

Hofbauer S, Schaffner I, Furtmüller PG, Obinger C.

Biotechnol J. 2014 Apr;9(4):461-73. doi: 10.1002/biot.201300210. Epub 2014 Feb 12. Review.

14.

O(2)-evolving chlorite dismutase as a tool for studying O(2)-utilizing enzymes.

Dassama LM, Yosca TH, Conner DA, Lee MH, Blanc B, Streit BR, Green MT, DuBois JL, Krebs C, Bollinger JM Jr.

Biochemistry. 2012 Feb 28;51(8):1607-16. doi: 10.1021/bi201906x. Epub 2012 Feb 13.

15.
16.

Examination of the reaction of fully reduced cytochrome oxidase with hydrogen peroxide by flow-flash spectroscopy.

Zaslavsky D, Smirnova IA, Brzezinski P, Shinzawa-Itoh K, Yoshikawa S, Gennis RB.

Biochemistry. 1999 Nov 30;38(48):16016-23.

PMID:
10625470
17.

Dimeric chlorite dismutase from the nitrogen-fixing cyanobacterium Cyanothece sp. PCC7425.

Schaffner I, Hofbauer S, Krutzler M, Pirker KF, Bellei M, Stadlmayr G, Mlynek G, Djinovic-Carugo K, Battistuzzi G, Furtmüller PG, Daims H, Obinger C.

Mol Microbiol. 2015 Jun;96(5):1053-68. doi: 10.1111/mmi.12989. Epub 2015 Apr 6.

18.

Understanding how the distal environment directs reactivity in chlorite dismutase: spectroscopy and reactivity of Arg183 mutants.

Blanc B, Mayfield JA, McDonald CA, Lukat-Rodgers GS, Rodgers KR, DuBois JL.

Biochemistry. 2012 Mar 6;51(9):1895-910. doi: 10.1021/bi2017377. Epub 2012 Feb 22.

19.

Production of dioxygen in the dark: dismutases of oxyanions.

DuBois JL, Ojha S.

Met Ions Life Sci. 2015;15:45-87. doi: 10.1007/978-3-319-12415-5_3. Review.

20.

Chlorite-hemoprotein interaction as key role for the pharmacological activity of the chlorite-based drug WF10.

Schempp H, Reim M, Dornisch K, Elstner EF.

Arzneimittelforschung. 2001;51(7):554-62.

PMID:
11505786

Supplemental Content

Support Center