Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Household structure and infectious disease transmission.

House T, Keeling MJ.

Epidemiol Infect. 2009 May;137(5):654-61. doi: 10.1017/S0950268808001416. Epub 2008 Oct 8.

2.

Reproductive numbers, epidemic spread and control in a community of households.

Goldstein E, Paur K, Fraser C, Kenah E, Wallinga J, Lipsitch M.

Math Biosci. 2009 Sep;221(1):11-25. doi: 10.1016/j.mbs.2009.06.002. Epub 2009 Jun 25.

3.

Control of transmission with two types of infection.

Ball F, Becker NG.

Math Biosci. 2006 Apr;200(2):170-87. Epub 2006 Feb 21.

PMID:
16494902
4.
5.

Deterministic epidemic models with explicit household structure.

House T, Keeling MJ.

Math Biosci. 2008 May;213(1):29-39. doi: 10.1016/j.mbs.2008.01.011. Epub 2008 Feb 26.

PMID:
18374370
6.

Incorporating population dynamics into household models of infectious disease transmission.

Glass K, McCaw JM, McVernon J.

Epidemics. 2011 Sep;3(3-4):152-8. doi: 10.1016/j.epidem.2011.05.001. Epub 2011 Jun 1.

PMID:
22094338
7.
8.

Threshold parameters for a model of epidemic spread among households and workplaces.

Pellis L, Ferguson NM, Fraser C.

J R Soc Interface. 2009 Nov 6;6(40):979-87. doi: 10.1098/rsif.2008.0493. Epub 2009 Feb 25.

9.

Large-scale spatial-transmission models of infectious disease.

Riley S.

Science. 2007 Jun 1;316(5829):1298-301. Review.

PMID:
17540894
10.

Effective degree household network disease model.

Ma J, van den Driessche P, Willeboordse FH.

J Math Biol. 2013 Jan;66(1-2):75-94. doi: 10.1007/s00285-011-0502-9. Epub 2012 Jan 18.

PMID:
22252505
11.

Vaccination ethics.

Viens AM, Dawson A.

Vaccine. 2014 Dec 12;32(52):7161-2. doi: 10.1016/j.vaccine.2014.10.032. Epub 2014 Oct 29. No abstract available.

PMID:
25454879
12.

An integral equation model for the control of a smallpox outbreak.

Aldis GK, Roberts MG.

Math Biosci. 2005 May;195(1):1-22.

PMID:
15922002
13.

Reproduction numbers for epidemic models with households and other social structures. I. Definition and calculation of R0.

Pellis L, Ball F, Trapman P.

Math Biosci. 2012 Jan;235(1):85-97. doi: 10.1016/j.mbs.2011.10.009. Epub 2011 Nov 7.

14.

The role of routine versus random movements on the spread of disease in Great Britain.

Danon L, House T, Keeling MJ.

Epidemics. 2009 Dec;1(4):250-8. doi: 10.1016/j.epidem.2009.11.002. Epub 2009 Nov 14.

PMID:
21352771
15.

Reproduction numbers for epidemic models with households and other social structures II: Comparisons and implications for vaccination.

Ball F, Pellis L, Trapman P.

Math Biosci. 2016 Apr;274:108-39. doi: 10.1016/j.mbs.2016.01.006. Epub 2016 Feb 2.

PMID:
26845663
16.

Calculation of R0 for age-of-infection models.

Yang CK, Brauer F.

Math Biosci Eng. 2008 Jul;5(3):585-99.

PMID:
18616360
18.

The basic reproduction number and the probability of extinction for a dynamic epidemic model.

Neal P.

Math Biosci. 2012 Mar;236(1):31-5. doi: 10.1016/j.mbs.2012.01.002. Epub 2012 Jan 17.

PMID:
22269870
19.

Epidemic modelling: aspects where stochasticity matters.

Britton T, Lindenstrand D.

Math Biosci. 2009 Dec;222(2):109-16. doi: 10.1016/j.mbs.2009.10.001. Epub 2009 Oct 30.

PMID:
19837097
20.

Vaccination against infectious diseases: what is promising?

Doerr HW, Berger A.

Med Microbiol Immunol. 2014 Dec;203(6):365-71. doi: 10.1007/s00430-014-0346-1. Epub 2014 Jul 27. Review.

PMID:
25064610

Supplemental Content

Support Center