Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 263

1.

Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women.

Bishop D, Edge J, Thomas C, Mercier J.

Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R1991-8. doi: 10.1152/ajpregu.00863.2007. Epub 2008 Oct 1.

PMID:
18832090
2.

Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations.

Edge J, Eynon N, McKenna MJ, Goodman CA, Harris RC, Bishop DJ.

Exp Physiol. 2013 Feb;98(2):481-90. doi: 10.1113/expphysiol.2012.067603. Epub 2012 Aug 23.

3.

High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle.

Bishop D, Edge J, Thomas C, Mercier J.

J Appl Physiol (1985). 2007 Feb;102(2):616-21. Epub 2006 Nov 2.

PMID:
17082373
4.

Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis.

Thomas C, Bishop D, Moore-Morris T, Mercier J.

Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E916-22. Epub 2007 Jul 3.

PMID:
17609257
5.

Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.

Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J.

Am J Physiol Endocrinol Metab. 2004 Feb;286(2):E245-51. Epub 2003 Oct 14.

PMID:
14559724
6.

Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists.

Gunnarsson TP, Christensen PM, Thomassen M, Nielsen LR, Bangsbo J.

Am J Physiol Regul Integr Comp Physiol. 2013 Oct 1;305(7):R811-21. doi: 10.1152/ajpregu.00467.2012. Epub 2013 Jul 24.

PMID:
23883682
7.

Metabolic, enzymatic, and transporter responses in human muscle during three consecutive days of exercise and recovery.

Green HJ, Bombardier E, Duhamel TA, Stewart RD, Tupling AR, Ouyang J.

Am J Physiol Regul Integr Comp Physiol. 2008 Oct;295(4):R1238-50. doi: 10.1152/ajpregu.00171.2008. Epub 2008 Jul 23.

PMID:
18650322
8.

Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development.

Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J.

Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1594-602. Epub 2006 Dec 28.

PMID:
17194727
9.

Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.

Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J.

Am J Physiol. 1999 Feb;276(2 Pt 1):E255-61.

PMID:
9950784
10.

Muscle contraction increases lactate transport while reducing sarcolemmal MCT4, but not MCT1.

Tonouchi M, Hatta H, Bonen A.

Am J Physiol Endocrinol Metab. 2002 May;282(5):E1062-9.

PMID:
11934671
11.

Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers.

Evertsen F, Medbø JI, Bonen A.

Acta Physiol Scand. 2001 Oct;173(2):195-205.

PMID:
11683677
12.

Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans.

Messonnier L, Kristensen M, Juel C, Denis C.

J Appl Physiol (1985). 2007 May;102(5):1936-44. Epub 2007 Feb 8. Erratum in: J Appl Physiol. 2008 Jan;104(1):318.

PMID:
17289910
13.

Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans.

Thomas C, Perrey S, Lambert K, Hugon G, Mornet D, Mercier J.

J Appl Physiol (1985). 2005 Mar;98(3):804-9. Epub 2004 Nov 5.

14.

Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status.

Thomas C, Bishop DJ, Lambert K, Mercier J, Brooks GA.

Am J Physiol Regul Integr Comp Physiol. 2012 Jan 1;302(1):R1-14. doi: 10.1152/ajpregu.00250.2011. Epub 2011 Oct 19. Review.

PMID:
22012699
15.

Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can influence interpretation of adaptations to training.

McGinley C, Bishop DJ.

Exp Physiol. 2016 Dec 1;101(12):1565-1580. doi: 10.1113/EP085921. Epub 2016 Nov 17.

PMID:
27689626
16.

T3 increases lactate transport and the expression of MCT4, but not MCT1, in rat skeletal muscle.

Wang Y, Tonouchi M, Miskovic D, Hatta H, Bonen A.

Am J Physiol Endocrinol Metab. 2003 Sep;285(3):E622-8.

PMID:
12900382
17.
18.

Effect of training and detraining on monocarboxylate transporter (MCT) 1 and MCT4 in Thoroughbred horses.

Kitaoka Y, Masuda H, Mukai K, Hiraga A, Takemasa T, Hatta H.

Exp Physiol. 2011 Mar;96(3):348-55. doi: 10.1113/expphysiol.2010.055483. Epub 2010 Dec 10.

19.

Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate.

Bonen A, McCullagh KJ, Putman CT, Hultman E, Jones NL, Heigenhauser GJ.

Am J Physiol. 1998 Jan;274(1 Pt 1):E102-7.

PMID:
9458754
20.

Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance.

Messonnier L, Freund H, Denis C, Féasson L, Lacour JR.

Int J Sports Med. 2006 Jan;27(1):60-6.

PMID:
16388444

Supplemental Content

Support Center