Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 339

1.

Photonic crystal fiber for dispersion compensation.

Zhao X, Zhou G, Li S, Liu Z, Wei D, Hou Z, Hou L.

Appl Opt. 2008 Oct 1;47(28):5190-6.

PMID:
18830310
2.

Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber.

Gérôme F, Auguste JL, Blondy JM.

Opt Lett. 2004 Dec 1;29(23):2725-7.

PMID:
15605485
3.

Broadband dispersion-compensating photonic crystal fiber.

Yang S, Zhang Y, He L, Xie S.

Opt Lett. 2006 Oct 1;31(19):2830-2.

PMID:
16969392
4.

Design of a broadband highly dispersive pure silica photonic crystal fiber.

Subbaraman H, Ling T, Jiang Y, Chen MY, Cao P, Chen RT.

Appl Opt. 2007 Jun 1;46(16):3263-8.

PMID:
17514284
5.

Large-effective-area dispersion-compensating fiber design based on dual-core microstructure.

Prabhakar G, Peer A, Rastogi V, Kumar A.

Appl Opt. 2013 Jul 1;52(19):4505-9. doi: 10.1364/AO.52.004505.

PMID:
23842244
6.

Dispersion properties of dual-core photonic-quasicrystal fiber.

Kim S, Kee CS.

Opt Express. 2009 Aug 31;17(18):15885-90. doi: 10.1364/OE.17.015885.

PMID:
19724587
8.

Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation.

Yu CP, Liou JH, Huang SS, Chang HC.

Opt Express. 2008 Mar 31;16(7):4443-51.

PMID:
18542541
9.

Characterization of microstructured optical fibers for wideband dispersion compensation.

Poli F, Cucinotta A, Fuochi M, Selleri S, Vincetti L.

J Opt Soc Am A Opt Image Sci Vis. 2003 Oct;20(10):1958-62.

PMID:
14570109
10.
11.

Photosensitivity-enabled dispersion controllability for quasi-phase-matching in photonic crystal fibers.

Zhang L, Luo T, Yue Y, Yu C, Willner AE.

Opt Lett. 2007 Dec 15;32(24):3498-500.

PMID:
18087521
12.
13.

Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band.

Varshney SK, Fujisawa T, Saitoh K, Koshiba M.

Opt Express. 2006 Apr 17;14(8):3528-40.

PMID:
19516499
14.

Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss.

Wang Y, Zhang X, Ren X, Zheng L, Liu X, Huang Y.

Appl Opt. 2010 Jan 20;49(3):292-7. doi: 10.1364/AO.49.000292.

PMID:
20090791
15.

Conception and characterization of a dual-concentric-core erbium-doped dispersion-compensating fiber.

Maury J, Auguste JL, Février S, Blondy JM, Dussardier B, Monnom G.

Opt Lett. 2004 Apr 1;29(7):700-2.

PMID:
15072363
16.
17.

Highly dispersive large mode area photonic bandgap fiber.

Gérôme F, Février S, Pryamikov AD, Auguste JL, Jamier R, Blondy JM, Likhachev ME, Bubnov MM, Semjonov SL, Dianov EM.

Opt Lett. 2007 May 15;32(10):1208-10.

PMID:
17440536
18.

Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber.

Yatsenko YP, Kosolapov AF, Levchenko AE, Semjonov SL, Dianov EM.

Opt Lett. 2009 Sep 1;34(17):2581-3. doi: 10.1364/OL.34.002581.

PMID:
19724496
19.

Fabrication of optical tips from photonic crystal fibers.

Carlson CA, Woehl JC.

Rev Sci Instrum. 2008 Oct;79(10):103707. doi: 10.1063/1.3002427.

PMID:
19044719
20.

Supplemental Content

Support Center