Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125


Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS.

Waters EA, Chen J, Allen JS, Zhang H, Lanza GM, Wickline SA.

J Cardiovasc Magn Reson. 2008 Sep 25;10:43. doi: 10.1186/1532-429X-10-43.


Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles.

Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA.

Circulation. 2003 Nov 4;108(18):2270-4. Epub 2003 Oct 13.


Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging.

Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang H, Robertson JD, Wickline SA, Lanza GM.

Cancer Res. 2003 Sep 15;63(18):5838-43.


Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis.

Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang H, Wickline SA, Lanza GM.

Arterioscler Thromb Vasc Biol. 2006 Sep;26(9):2103-9. Epub 2006 Jul 6.


High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model.

Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T, Erpelding T, Schmieder AH, Kiefer G, Gulyas G, Athey PS, Gaffney PJ, Wickline SA, Lanza GM.

Invest Radiol. 2009 Jan;44(1):15-22. doi: 10.1097/RLI.0b013e31818935eb.


Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis.

Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM.

JACC Cardiovasc Imaging. 2008 Sep;1(5):624-34. doi: 10.1016/j.jcmg.2008.06.003.


Early identification of aortic valve sclerosis using iron oxide enhanced MRI.

Hamilton AM, Rogers KA, Belisle AJ, Ronald JA, Rutt BK, Weissleder R, Boughner DR.

J Magn Reson Imaging. 2010 Jan;31(1):110-6. doi: 10.1002/jmri.22008.


Development of aortic valve sclerosis or stenosis in rabbits: role of cholesterol and calcium.

Drolet MC, Couet J, Arsenault M.

J Heart Valve Dis. 2008 Jul;17(4):381-7.


Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles.

Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM.

Magn Reson Med. 2005 Mar;53(3):621-7.


Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis.

Soini Y, Salo T, Satta J.

Hum Pathol. 2003 Aug;34(8):756-63.


Identification of tissue factor in experimental aortic valve sclerosis.

Marechaux S, Corseaux D, Vincentelli A, Richardson M, Ung A, Susen S, Zawadzki C, Beregi JP, Ezekowitz MD, Jude B, Le Tourneau T.

Cardiovasc Pathol. 2009 Mar-Apr;18(2):67-76. doi: 10.1016/j.carpath.2007.12.014. Epub 2008 Mar 6.


Development of aortic valve sclerosis in a rabbit model of atherosclerosis: an immunohistochemical and histological study.

Cimini M, Boughner DR, Ronald JA, Aldington L, Rogers KA.

J Heart Valve Dis. 2005 May;14(3):365-75.


Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using α(v)β₃-targeted theranostic nanoparticles.

Pan D, Schmieder AH, Wang K, Yang X, Senpan A, Cui G, Killgore K, Kim B, Allen JS, Zhang H, Caruthers SD, Shen B, Wickline SA, Lanza GM.

Theranostics. 2014 Mar 11;4(6):565-78. doi: 10.7150/thno.7581. eCollection 2014.


In-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI.

Gonzales C, Yoshihara HA, Dilek N, Leignadier J, Irving M, Mieville P, Helm L, Michielin O, Schwitter J.

PLoS One. 2016 Oct 13;11(10):e0164557. doi: 10.1371/journal.pone.0164557. eCollection 2016.


Angiogenic activation of valvular endothelial cells in aortic valve stenosis.

Chalajour F, Treede H, Ebrahimnejad A, Lauke H, Reichenspurner H, Ergun S.

Exp Cell Res. 2004 Aug 15;298(2):455-64.


Quantitative (1)H MRI, (19)F MRI, and (19)F MRS of cell-internalized perfluorocarbon paramagnetic nanoparticles.

Kok MB, de Vries A, Abdurrachim D, Prompers JJ, Grüll H, Nicolay K, Strijkers GJ.

Contrast Media Mol Imaging. 2011 Jan-Feb;6(1):19-27. doi: 10.1002/cmmi.398. Epub 2010 Jul 21.


Increased expression of connexin43 on the aortic valve in the hypercholesterolemic rabbit model.

Wang YP, Choe M, Choi SY, Jin U, Kim CK, Seo EJ, Cho IJ, Park CB.

J Invest Surg. 2009 Mar-Apr;22(2):98-104. doi: 10.1080/08941930802713035.


Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles.

Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G, Gulyas G, Athey P, Scott MJ, Wickline SA, Lanza GM.

Int J Cancer. 2007 May 1;120(9):1951-7.


19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons.

Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA.

FASEB J. 2007 Jun;21(8):1647-54. Epub 2007 Feb 6.


MR molecular imaging of aortic angiogenesis.

Cai K, Caruthers SD, Huang W, Williams TA, Zhang H, Wickline SA, Lanza GM, Winter PM.

JACC Cardiovasc Imaging. 2010 Aug;3(8):824-32. doi: 10.1016/j.jcmg.2010.03.012.

Supplemental Content

Support Center