Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame.

Semotok JL, Luo H, Cooperstock RL, Karaiskakis A, Vari HK, Smibert CA, Lipshitz HD.

Mol Cell Biol. 2008 Nov;28(22):6757-72. doi: 10.1128/MCB.00037-08. Epub 2008 Sep 15. Erratum in: Mol Cell Biol. 2008 Dec;28(24):7533.

2.

Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.

Semotok JL, Cooperstock RL, Pinder BD, Vari HK, Lipshitz HD, Smibert CA.

Curr Biol. 2005 Feb 22;15(4):284-94.

3.

SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase.

Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA, Lipshitz HD.

Dev Cell. 2007 Jan;12(1):143-55.

4.

smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo.

Smibert CA, Wilson JE, Kerr K, Macdonald PM.

Genes Dev. 1996 Oct 15;10(20):2600-9.

5.

The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators.

Aviv T, Lin Z, Lau S, Rendl LM, Sicheri F, Smibert CA.

Nat Struct Biol. 2003 Aug;10(8):614-21.

PMID:
12858164
6.

Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

Chen L, Dumelie JG, Li X, Cheng MH, Yang Z, Laver JD, Siddiqui NU, Westwood JT, Morris Q, Lipshitz HD, Smibert CA.

Genome Biol. 2014 Jan 7;15(1):R4. doi: 10.1186/gb-2014-15-1-r4.

7.

Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo.

Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M.

Nature. 2010 Oct 28;467(7319):1128-32. doi: 10.1038/nature09465. Epub 2010 Oct 17.

9.

Glorund, a Drosophila hnRNP F/H homolog, is an ovarian repressor of nanos translation.

Kalifa Y, Huang T, Rosen LN, Chatterjee S, Gavis ER.

Dev Cell. 2006 Mar;10(3):291-301.

11.

Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila.

Dahanukar A, Walker JA, Wharton RP.

Mol Cell. 1999 Aug;4(2):209-18.

12.

Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos.

Jeske M, Meyer S, Temme C, Freudenreich D, Wahle E.

J Biol Chem. 2006 Sep 1;281(35):25124-33. Epub 2006 Jun 22.

13.

A multiprotein complex that mediates translational enhancement in Drosophila.

Nelson MR, Luo H, Vari HK, Cox BJ, Simmonds AJ, Krause HM, Lipshitz HD, Smibert CA.

J Biol Chem. 2007 Nov 23;282(47):34031-8. Epub 2007 Sep 21.

14.

Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules.

Baez MV, Boccaccio GL.

J Biol Chem. 2005 Dec 30;280(52):43131-40. Epub 2005 Oct 12.

15.

Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression.

Nelson MR, Leidal AM, Smibert CA.

EMBO J. 2004 Jan 14;23(1):150-9. Epub 2003 Dec 11.

16.
17.

A regulatory role for the 5' and 3' untranslated regions in differential expression of hsp83 in Leishmania.

Aly R, Argaman M, Halman S, Shapira M.

Nucleic Acids Res. 1994 Aug 11;22(15):2922-9.

18.

Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1.

Neal SJ, Karunanithi S, Best A, So AK, Tanguay RM, Atwood HL, Westwood JT.

Physiol Genomics. 2006 May 16;25(3):493-501. Epub 2006 Apr 4.

19.

Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels.

Jeske M, Moritz B, Anders A, Wahle E.

EMBO J. 2011 Jan 5;30(1):90-103. doi: 10.1038/emboj.2010.283. Epub 2010 Nov 16.

20.

Supplemental Content

Support Center