Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 170

1.

Ca2+ -induced tropomyosin movement in scallop striated muscle thin filaments.

Jung HS, Craig R.

J Mol Biol. 2008 Nov 14;383(3):512-9. doi: 10.1016/j.jmb.2008.08.051. Epub 2008 Aug 27.

2.

A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle.

Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A, Craig R, Tobacman LS, Lehman W, Holmes KC.

J Struct Biol. 2006 Aug;155(2):273-84. Epub 2006 May 7.

PMID:
16793285
3.

Ca2+-dependent photocrosslinking of tropomyosin residue 146 to residues 157-163 in the C-terminal domain of troponin I in reconstituted skeletal muscle thin filaments.

Mudalige WA, Tao TC, Lehrer SS.

J Mol Biol. 2009 Jun 12;389(3):575-83. doi: 10.1016/j.jmb.2009.04.027. Epub 2009 Apr 18.

4.

Steric-model for activation of muscle thin filaments.

Vibert P, Craig R, Lehman W.

J Mol Biol. 1997 Feb 14;266(1):8-14.

PMID:
9054965
5.

Three-dimensional reconstruction of thin filaments containing mutant tropomyosin.

Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS.

Biophys J. 2000 Feb;78(2):908-17.

6.

Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments.

Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R.

J Mol Biol. 2000 Sep 22;302(3):593-606.

PMID:
10986121
7.

Ca(2+)-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy.

Narita A, Yasunaga T, Ishikawa T, Mayanagi K, Wakabayashi T.

J Mol Biol. 2001 Apr 27;308(2):241-61.

PMID:
11327765
8.

Structural basis for the activation of muscle contraction by troponin and tropomyosin.

Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R.

J Mol Biol. 2009 May 15;388(4):673-81. doi: 10.1016/j.jmb.2009.03.060. Epub 2009 Mar 31.

9.

Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state.

Sousa DR, Stagg SM, Stroupe ME.

J Mol Biol. 2013 Nov 15;425(22):4544-55. doi: 10.1016/j.jmb.2013.08.020. Epub 2013 Sep 8.

10.

An atomic model of the thin filament in the relaxed and Ca2+-activated states.

Pirani A, Vinogradova MV, Curmi PM, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W.

J Mol Biol. 2006 Mar 31;357(3):707-17. Epub 2006 Jan 13.

PMID:
16469331
11.

Mini-thin filaments regulated by troponin-tropomyosin.

Gong H, Hatch V, Ali L, Lehman W, Craig R, Tobacman LS.

Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):656-61. Epub 2005 Jan 11.

12.
13.

Regulation of contraction in striated muscle.

Gordon AM, Homsher E, Regnier M.

Physiol Rev. 2000 Apr;80(2):853-924. Review.

15.
16.

Characterization of three regulatory states of the striated muscle thin filament.

Van Dijk J, Knight AE, Molloy JE, Chaussepied P.

J Mol Biol. 2002 Oct 25;323(3):475-89.

PMID:
12381303
17.

The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments.

Sakuma A, Kimura-Sakiyama C, Onoue A, Shitaka Y, Kusakabe T, Miki M.

Biochemistry. 2006 Aug 8;45(31):9550-8.

PMID:
16878989
18.

Single particle analysis of relaxed and activated muscle thin filaments.

Pirani A, Xu C, Hatch V, Craig R, Tobacman LS, Lehman W.

J Mol Biol. 2005 Feb 25;346(3):761-72. Epub 2005 Jan 11.

PMID:
15713461
19.

The C terminus of cardiac troponin I stabilizes the Ca2+-activated state of tropomyosin on actin filaments.

Galińska A, Hatch V, Craig R, Murphy AM, Van Eyk JE, Wang CL, Lehman W, Foster DB.

Circ Res. 2010 Mar 5;106(4):705-11. doi: 10.1161/CIRCRESAHA.109.210047. Epub 2009 Dec 24.

20.

Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin.

Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T.

J Mol Biol. 2005 Sep 9;352(1):178-201.

PMID:
16061251

Supplemental Content

Support Center