Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 387

1.

Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.

Miao X, Wilson BK, Pun SH, Lin LY.

Opt Express. 2008 Sep 1;16(18):13517-25.

PMID:
18772960
2.
3.
4.

Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.

Simmons CS, Knouf EC, Tewari M, Lin LY.

J Vis Exp. 2011 Sep 27;(55). pii: 3390. doi: 10.3791/3390.

5.

Optical vortex trap for resonant confinement of metal nanoparticles.

Dienerowitz M, Mazilu M, Reece PJ, Krauss TF, Dholakia K.

Opt Express. 2008 Mar 31;16(7):4991-9.

PMID:
18542599
6.

Optical forces on metallic nanoparticles induced by a photonic nanojet.

Cui X, Erni D, Hafner C.

Opt Express. 2008 Sep 1;16(18):13560-8.

PMID:
18772965
7.

Multiple excitation of localized surface plasmon to create a 10 nm x 10 nm strong optical spot using an Au nanoparticle array-based ridge waveguide.

Kang SM, Han J, Kim T, Park NC, Park KS, Min BK, Park YP.

Opt Express. 2010 Jan 18;18(2):1576-85. doi: 10.1364/OE.18.001576.

PMID:
20173984
8.

Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals.

Zhang X, Wang J, Tang B, Tan X, Rupp RA, Pan L, Kong Y, Sun Q, Xu J.

Opt Express. 2009 Jun 8;17(12):9981-8.

PMID:
19506648
9.

Moving nanoparticles with Raman scattering.

Ringler M, Klar TA, Schwemer A, Susha AS, Stehr J, Raschke G, Funk S, Borowski M, Nichtl A, Kürzinger K, Phillips RT, Feldmann J.

Nano Lett. 2007 Sep;7(9):2753-7.

PMID:
17696403
10.
11.

Tunable optical sorting and manipulation of nanoparticles via plasmon excitation.

Zelenina AS, Quidant R, Badenes G, Nieto-Vesperinas M.

Opt Lett. 2006 Jul 1;31(13):2054-6.

PMID:
16770430
12.

Optical excitation and detection of vapor bubbles around plasmonic nanoparticles.

Lapotko D.

Opt Express. 2009 Feb 16;17(4):2538-56.

PMID:
19219157
13.

Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.

Yang AH, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D.

Nature. 2009 Jan 1;457(7225):71-5. doi: 10.1038/nature07593.

PMID:
19122638
14.
15.

The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy.

Huang X, Qian W, El-Sayed IH, El-Sayed MA.

Lasers Surg Med. 2007 Oct;39(9):747-53.

PMID:
17960762
16.

The phase-response effect of size-dependent optical enhancement in a single nanoparticle.

Huang CH, Lin HY, Lin CH, Chui HC, Lan YC, Chu SW.

Opt Express. 2008 Jun 23;16(13):9580-6.

PMID:
18575525
17.

Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition.

Härtling T, Alaverdyan Y, Hille A, Wenzel MT, Käll M, Eng LM.

Opt Express. 2008 Aug 4;16(16):12362-71.

PMID:
18679513
18.

Three dimensional nanoparticle trapping enhanced by surface plasmon resonance.

Wu J, Gan X.

Opt Express. 2010 Dec 20;18(26):27619-26. doi: 10.1364/OE.18.027619.

PMID:
21197036
19.

Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.

Zhang W, Huang L, Santschi C, Martin OJ.

Nano Lett. 2010 Mar 10;10(3):1006-11. doi: 10.1021/nl904168f.

PMID:
20151698
20.

Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer.

Liu GL, Long YT, Choi Y, Kang T, Lee LP.

Nat Methods. 2007 Dec;4(12):1015-7.

PMID:
18026109
Items per page

Supplemental Content

Support Center