Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 395

1.

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.

Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA.

J Appl Physiol (1985). 2008 Nov;105(5):1462-70. doi: 10.1152/japplphysiol.90882.2008. Epub 2008 Sep 4.

2.

A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ.

J Physiol. 2010 Mar 15;588(Pt 6):1011-22. doi: 10.1113/jphysiol.2009.181743. Epub 2010 Jan 25.

3.

Low-volume interval training improves muscle oxidative capacity in sedentary adults.

Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ.

Med Sci Sports Exerc. 2011 Oct;43(10):1849-56. doi: 10.1249/MSS.0b013e3182199834.

PMID:
21448086
4.

Exercise with low glycogen increases PGC-1╬▒ gene expression in human skeletal muscle.

Psilander N, Frank P, Flockhart M, Sahlin K.

Eur J Appl Physiol. 2013 Apr;113(4):951-63. doi: 10.1007/s00421-012-2504-8. Epub 2012 Oct 2.

PMID:
23053125
5.

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ.

J Physiol. 2008 Jan 1;586(1):151-60. Epub 2007 Nov 8.

6.

High-intensity interval training increases SIRT1 activity in human skeletal muscle.

Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, Bonen A.

Appl Physiol Nutr Metab. 2010 Jun;35(3):350-7. doi: 10.1139/H10-030.

PMID:
20555380
7.

Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

Burgomaster KA, Heigenhauser GJ, Gibala MJ.

J Appl Physiol (1985). 2006 Jun;100(6):2041-7. Epub 2006 Feb 9.

8.

Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen.

Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, Hawley JA.

Exp Physiol. 2010 Feb;95(2):351-8. doi: 10.1113/expphysiol.2009.049353. Epub 2009 Oct 23.

9.

The effects of apelin treatment on skeletal muscle mitochondrial content.

Frier BC, Williams DB, Wright DC.

Am J Physiol Regul Integr Comp Physiol. 2009 Dec;297(6):R1761-8. doi: 10.1152/ajpregu.00422.2009. Epub 2009 Sep 30.

10.

Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.

Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ.

Exp Physiol. 2014 May 1;99(5):782-91. doi: 10.1113/expphysiol.2013.077453. Epub 2014 Feb 14.

11.

Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling.

Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, Jeacocke N, Snow RJ, Yeo WK, Burke LM.

J Appl Physiol (1985). 2010 Jul;109(1):126-34. doi: 10.1152/japplphysiol.00950.2009. Epub 2010 May 13.

12.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90. Epub 2005 Feb 10.

13.

Skeletal muscle adaptation: training twice every second day vs. training once daily.

Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK.

J Appl Physiol (1985). 2005 Jan;98(1):93-9. Epub 2004 Sep 10.

14.

Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training.

Nordsborg NB, Connolly L, Weihe P, Iuliano E, Krustrup P, Saltin B, Mohr M.

J Appl Physiol (1985). 2015 Jul 15;119(2):116-23. doi: 10.1152/japplphysiol.00101.2015. Epub 2015 May 28.

15.

Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans.

Cochran AJ, Little JP, Tarnopolsky MA, Gibala MJ.

J Appl Physiol (1985). 2010 Mar;108(3):628-36. doi: 10.1152/japplphysiol.00659.2009. Epub 2010 Jan 7.

16.

High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1112-23. doi: 10.1139/H08-097.

PMID:
19088769
17.

Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume.

Iaia FM, Hellsten Y, Nielsen JJ, Fernstr├Âm M, Sahlin K, Bangsbo J.

J Appl Physiol (1985). 2009 Jan;106(1):73-80. doi: 10.1152/japplphysiol.90676.2008. Epub 2008 Oct 9.

18.

Substrate use and biochemical response to a 3,211-km bicycle tour in trained cyclists.

Slivka DR, Dumke CL, Hailes WS, Cuddy JS, Ruby BC.

Eur J Appl Physiol. 2012 May;112(5):1621-30. doi: 10.1007/s00421-011-2129-3. Epub 2011 Aug 25.

PMID:
21866362
19.

Glucose ingestion during endurance training does not alter adaptation.

Akerstrom TC, Fischer CP, Plomgaard P, Thomsen C, van Hall G, Pedersen BK.

J Appl Physiol (1985). 2009 Jun;106(6):1771-9. doi: 10.1152/japplphysiol.91534.2008. Epub 2009 Feb 19.

20.

Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.

Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M.

J Appl Physiol (1985). 2009 Mar;106(3):929-34. doi: 10.1152/japplphysiol.90880.2008. Epub 2008 Dec 26.

Supplemental Content

Support Center