Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Vitamin D and human health: lessons from vitamin D receptor null mice.

Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M.

Endocr Rev. 2008 Oct;29(6):726-76. doi: 10.1210/er.2008-0004. Epub 2008 Aug 11. Review.

2.

Vitamin D action: lessons from VDR and Cyp27b1 null mice.

Bouillon R, Lieben L, Mathieu C, Verstuyf A, Carmeliet G.

Pediatr Endocrinol Rev. 2013 Jun;10 Suppl 2:354-66. Review.

PMID:
23858619
3.

In vivo function of VDR in gene expression-VDR knock-out mice.

Kato S, Takeyama K, Kitanaka S, Murayama A, Sekine K, Yoshizawa T.

J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):247-51. Review.

PMID:
10418998
4.
5.

Vitamin D and type II sodium-dependent phosphate cotransporters.

Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K.

Contrib Nephrol. 2013;180:86-97. doi: 10.1159/000346786. Epub 2013 May 6. Review.

PMID:
23652552
6.
7.

Vitamin D.

Dusso AS, Brown AJ, Slatopolsky E.

Am J Physiol Renal Physiol. 2005 Jul;289(1):F8-28. Review.

8.

Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease.

Franczyk A, Stolarz-Skrzypek K, Wesołowska A, Czarnecka D.

Cardiovasc Hematol Disord Drug Targets. 2014;14(1):34-44. Review.

PMID:
24597598
9.

Hypergravity modulates vitamin D receptor target gene mRNA expression in mice.

Ishizawa M, Iwasaki K, Kato S, Makishima M.

Am J Physiol Endocrinol Metab. 2009 Sep;297(3):E728-34. doi: 10.1152/ajpendo.00168.2009. Epub 2009 Jun 23.

10.

Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts.

Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G.

J Clin Invest. 2006 Dec;116(12):3150-9. Epub 2006 Nov 9.

11.

Vitamin D resistance.

Bouillon R, Verstuyf A, Mathieu C, Van Cromphaut S, Masuyama R, Dehaes P, Carmeliet G.

Best Pract Res Clin Endocrinol Metab. 2006 Dec;20(4):627-45. Review.

PMID:
17161336
12.

Inferences from genetically modified mouse models on the skeletal actions of vitamin D.

Goltzman D.

J Steroid Biochem Mol Biol. 2015 Apr;148:219-24. doi: 10.1016/j.jsbmb.2014.09.011. Epub 2014 Sep 16. Review.

PMID:
25237033
13.
14.
15.

Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice.

Xue Y, Fleet JC.

Gastroenterology. 2009 Apr;136(4):1317-27, e1-2. doi: 10.1053/j.gastro.2008.12.051. Epub 2008 Dec 27.

16.

Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.

Chow EC, Quach HP, Vieth R, Pang KS.

Am J Physiol Endocrinol Metab. 2013 May 1;304(9):E977-89. doi: 10.1152/ajpendo.00489.2012. Epub 2013 Mar 12.

17.

Mechanism of vitamin D receptor action.

Demay MB.

Ann N Y Acad Sci. 2006 Apr;1068:204-13. Review.

PMID:
16831920
18.
19.

Effects of calcium and of the Vitamin D system on skeletal and calcium homeostasis: lessons from genetic models.

Goltzman D, Miao D, Panda DK, Hendy GN.

J Steroid Biochem Mol Biol. 2004 May;89-90(1-5):485-9. Review.

PMID:
15225825
20.

Physiological insights from the vitamin D receptor knockout mouse.

Demay MB.

Calcif Tissue Int. 2013 Feb;92(2):99-105. doi: 10.1007/s00223-012-9633-2. Epub 2012 Aug 18. Review.

Supplemental Content

Support Center