Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 196

1.

Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.

Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Körner R, Greff Z, Kéri G, Stemmann O, Mann M.

Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007.

2.

Large-scale proteomics analysis of the human kinome.

Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Kéri G, Mann M, Daub H.

Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.

3.

Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry.

Wissing J, Jänsch L, Nimtz M, Dieterich G, Hornberger R, Kéri G, Wehland J, Daub H.

Mol Cell Proteomics. 2007 Mar;6(3):537-47. Epub 2006 Dec 27.

4.

Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.

Yang F, Stenoien DL, Strittmatter EF, Wang J, Ding L, Lipton MS, Monroe ME, Nicora CD, Gristenko MA, Tang K, Fang R, Adkins JN, Camp DG 2nd, Chen DJ, Smith RD.

J Proteome Res. 2006 May;5(5):1252-60.

PMID:
16674116
5.

Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.

Schreiber TB, Mäusbacher N, Breitkopf SB, Grundner-Culemann K, Daub H.

Proteomics. 2008 Nov;8(21):4416-32. doi: 10.1002/pmic.200800132. Review.

PMID:
18837465
6.

Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression.

Dulla K, Daub H, Hornberger R, Nigg EA, Körner R.

Mol Cell Proteomics. 2010 Jun;9(6):1167-81. doi: 10.1074/mcp.M900335-MCP200. Epub 2010 Jan 23.

7.

Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.

Nagano K, Shinkawa T, Mutoh H, Kondoh O, Morimoto S, Inomata N, Ashihara M, Ishii N, Aoki Y, Haramura M.

Proteomics. 2009 May;9(10):2861-74. doi: 10.1002/pmic.200800667.

PMID:
19415658
8.

Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.

Wu CJ, Chen YW, Tai JH, Chen SH.

J Proteome Res. 2011 Mar 4;10(3):1088-97. doi: 10.1021/pr100864b. Epub 2011 Feb 14.

PMID:
21210654
9.

Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages.

Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA, Körner R.

J Proteome Res. 2009 Oct;8(10):4553-63. doi: 10.1021/pr9003773.

PMID:
19691289
11.

Reconstructing the regulatory kinase pathways of myogenesis from phosphopeptide data.

Puente LG, Voisin S, Lee RE, Megeney LA.

Mol Cell Proteomics. 2006 Dec;5(12):2244-51. Epub 2006 Sep 13.

12.

Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.

Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ.

J Proteome Res. 2008 Feb;7(2):687-97. Epub 2007 Nov 23.

PMID:
18034456
13.

Analytical strategies for phosphoproteomics.

Thingholm TE, Jensen ON, Larsen MR.

Proteomics. 2009 Mar;9(6):1451-68. doi: 10.1002/pmic.200800454. Review.

PMID:
19235172
14.

Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis.

Benschop JJ, Mohammed S, O'Flaherty M, Heck AJ, Slijper M, Menke FL.

Mol Cell Proteomics. 2007 Jul;6(7):1198-214. Epub 2007 Feb 21.

15.

Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.

Bian Y, Ye M, Song C, Cheng K, Wang C, Wei X, Zhu J, Chen R, Wang F, Zou H.

J Proteome Res. 2012 May 4;11(5):2828-37. doi: 10.1021/pr300242w. Epub 2012 Apr 11.

PMID:
22468782
16.

Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.

Chang YC, Lin SY, Liang SY, Pan KT, Chou CC, Chen CH, Liao CL, Khoo KH, Meng TC.

J Proteome Res. 2008 Mar;7(3):1055-66. doi: 10.1021/pr700801p. Epub 2008 Feb 19.

PMID:
18281928
17.

Analytical strategies in mass spectrometry-based phosphoproteomics.

Rosenqvist H, Ye J, Jensen ON.

Methods Mol Biol. 2011;753:183-213. doi: 10.1007/978-1-61779-148-2_13.

PMID:
21604124
18.

Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.

Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X.

J Proteome Res. 2008 Jun;7(6):2526-38. doi: 10.1021/pr700582z. Epub 2008 May 13.

PMID:
18473453
19.

Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics.

Wiśniewski JR, Zougman A, Krüger S, Ziółkowski P, Pudełko M, Bebenek M, Mann M.

Proteins. 2008 Nov 15;73(3):710-8. doi: 10.1002/prot.22104.

PMID:
18491381
20.

Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus.

Yang F, Camp DG 2nd, Gritsenko MA, Luo Q, Kelly RT, Clauss TR, Brinkley WR, Smith RD, Stenoien DL.

J Cell Sci. 2007 Nov 15;120(Pt 22):4060-70. Epub 2007 Oct 30.

Supplemental Content

Support Center