Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

The effects of midgut serine proteases on dengue virus type 2 infectivity of Aedes aegypti.

Brackney DE, Foy BD, Olson KE.

Am J Trop Med Hyg. 2008 Aug;79(2):267-74.

2.

Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti.

Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black W 4th, Barillas-Mury C.

Am J Trop Med Hyg. 2005 May;72(5):631-7.

PMID:
15891140
3.

Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.

Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE.

Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4198-203. Epub 2006 Mar 6.

4.

Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika.

Oliveira JHM, Talyuli OAC, Goncalves RLS, Paiva-Silva GO, Sorgine MHF, Alvarenga PH, Oliveira PL.

PLoS Negl Trop Dis. 2017 Apr 5;11(4):e0005525. doi: 10.1371/journal.pntd.0005525. eCollection 2017 Apr.

5.

Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ.

BMC Microbiol. 2007 Jan 30;7:9.

6.

Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.

Soares TS, Rodriguez Gonzalez BL, Torquato RJS, Lemos FJA, Costa-da-Silva AL, Capurro Guimarães ML, Tanaka AS.

Biochimie. 2018 Jan;144:160-168. doi: 10.1016/j.biochi.2017.11.005. Epub 2017 Nov 11.

PMID:
29133118
7.
8.

Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes.

Muturi EJ, Buckner E, Bara J.

Trop Med Int Health. 2017 Apr;22(4):399-406. doi: 10.1111/tmi.12846. Epub 2017 Feb 24.

9.

Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus.

Vazeille M, Gaborit P, Mousson L, Girod R, Failloux AB.

BMC Infect Dis. 2016 Jul 8;16:318. doi: 10.1186/s12879-016-1666-0.

10.

Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut.

Raquin V, Merkling SH, Gausson V, Moltini-Conclois I, Frangeul L, Varet H, Dillies MA, Saleh MC, Lambrechts L.

PLoS Negl Trop Dis. 2017 Dec 19;11(12):e0006152. doi: 10.1371/journal.pntd.0006152. eCollection 2017 Dec.

11.

A dengue receptor as possible genetic marker of vector competence in Aedes aegypti.

Mercado-Curiel RF, Black WC 4th, Muñoz Mde L.

BMC Microbiol. 2008 Jul 15;8:118. doi: 10.1186/1471-2180-8-118.

12.

CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells.

Tham HW, Balasubramaniam VR, Tejo BA, Ahmad H, Hassan SS.

Viruses. 2014 Dec 16;6(12):5028-46. doi: 10.3390/v6125028.

13.

Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes.

Isoe J, Rascón AA Jr, Kunz S, Miesfeld RL.

Insect Biochem Mol Biol. 2009 Dec;39(12):903-12. doi: 10.1016/j.ibmb.2009.10.008. Epub 2009 Nov 3.

14.

Screening of dengue virus in field-caught Aedes aegypti and Aedes albopictus (Diptera: Culicidae) by one-step SYBR green-based reverse transcriptase-polymerase chain reaction assay during 2004-2007 in Southern Taiwan.

Chen CF, Shu PY, Teng HJ, Su CL, Wu JW, Wang JH, Lin TH, Huang JH, Wu HS.

Vector Borne Zoonotic Dis. 2010 Dec;10(10):1017-25. doi: 10.1089/vbz.2008.0069. Epub 2010 May 18.

PMID:
21128850
15.

Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein.

Londono-Renteria B, Troupin A, Conway MJ, Vesely D, Ledizet M, Roundy CM, Cloherty E, Jameson S, Vanlandingham D, Higgs S, Fikrig E, Colpitts TM.

PLoS Pathog. 2015 Oct 22;11(10):e1005202. doi: 10.1371/journal.ppat.1005202. eCollection 2015 Oct.

16.

The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti.

Khoo CC, Piper J, Sanchez-Vargas I, Olson KE, Franz AW.

BMC Microbiol. 2010 Apr 28;10:130. doi: 10.1186/1471-2180-10-130.

17.

Detection of dengue viruses in field-caught Aedes aegypti (Diptera: Culicidae) in Maracay, Aragua state, Venezuela by type-specific polymerase chain reaction.

Urdaneta L, Herrera F, Pernalete M, Zoghbi N, Rubio-Palis Y, Barrios R, Rivero J, Comach G, Jiménez M, Salcedo M.

Infect Genet Evol. 2005 Mar;5(2):177-84.

PMID:
15639750
18.

Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus.

Hanley KA, Nelson JT, Schirtzinger EE, Whitehead SS, Hanson CT.

BMC Ecol. 2008 Feb 13;8:1. doi: 10.1186/1472-6785-8-1.

19.

Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2.

Olmo RP, Ferreira AGA, Izidoro-Toledo TC, Aguiar ERGR, de Faria IJS, de Souza KPR, Osório KP, Kuhn L, Hammann P, de Andrade EG, Todjro YM, Rocha MN, Leite THJF, Amadou SCG, Armache JN, Paro S, de Oliveira CD, Carvalho FD, Moreira LA, Marois E, Imler JL, Marques JT.

Nat Microbiol. 2018 Dec;3(12):1385-1393. doi: 10.1038/s41564-018-0268-6. Epub 2018 Oct 29.

PMID:
30374169
20.

Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus.

Charan SS, Pawar KD, Severson DW, Patole MS, Shouche YS.

Parasitol Res. 2013 Jul;112(7):2627-37. doi: 10.1007/s00436-013-3428-x. Epub 2013 May 1.

PMID:
23636307

Supplemental Content

Support Center