Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Structural basis for influence of viral glycans on ligand binding by influenza hemagglutinin.

Kasson PM, Pande VS.

Biophys J. 2008 Oct;95(7):L48-50. doi: 10.1529/biophysj.108.141507. Epub 2008 Jul 18.

2.

N-linked glycans on influenza A H3N2 hemagglutinin constrain binding of host antibodies, but shielding is limited.

Pentiah K, Lees WD, Moss DS, Shepherd AJ.

Glycobiology. 2015 Jan;25(1):124-32. doi: 10.1093/glycob/cwu097. Epub 2014 Sep 16.

PMID:
25227423
3.

Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic.

Xu R, McBride R, Nycholat CM, Paulson JC, Wilson IA.

J Virol. 2012 Jan;86(2):982-90. doi: 10.1128/JVI.06322-11. Epub 2011 Nov 9.

4.

Molecular mechanisms of inhibition of influenza by surfactant protein D revealed by large-scale molecular dynamics simulation.

Goh BC, Rynkiewicz MJ, Cafarella TR, White MR, Hartshorn KL, Allen K, Crouch EC, Calin O, Seeberger PH, Schulten K, Seaton BA.

Biochemistry. 2013 Nov 26;52(47):8527-38. doi: 10.1021/bi4010683. Epub 2013 Nov 13.

5.

Glycans on influenza hemagglutinin affect receptor binding and immune response.

Wang CC, Chen JR, Tseng YC, Hsu CH, Hung YF, Chen SW, Chen CM, Khoo KH, Cheng TJ, Cheng YS, Jan JT, Wu CY, Ma C, Wong CH.

Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42. doi: 10.1073/pnas.0909696106. Epub 2009 Oct 12.

6.

Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance.

Mandenius CF, Wang R, Aldén A, Bergström G, Thébault S, Lutsch C, Ohlson S.

Anal Chim Acta. 2008 Aug 8;623(1):66-75. doi: 10.1016/j.aca.2008.06.005. Epub 2008 Jun 12.

PMID:
18611459
7.

Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity.

Peng W, de Vries RP, Grant OC, Thompson AJ, McBride R, Tsogtbaatar B, Lee PS, Razi N, Wilson IA, Woods RJ, Paulson JC.

Cell Host Microbe. 2017 Jan 11;21(1):23-34. doi: 10.1016/j.chom.2016.11.004. Epub 2016 Dec 22.

8.

Nuclear Magnetic Resonance and Molecular Dynamics Simulation of the Interaction between Recognition Protein H7 of the Novel Influenza Virus H7N9 and Glycan Cell Surface Receptors.

Macchi E, Rudd TR, Raman R, Sasisekharan R, Yates EA, Naggi A, Guerrini M, Elli S.

Biochemistry. 2016 Dec 6;55(48):6605-6616. Epub 2016 Nov 23.

9.

Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin.

Schwarzer J, Rapp E, Hennig R, Genzel Y, Jordan I, Sandig V, Reichl U.

Vaccine. 2009 Jul 9;27(32):4325-36. doi: 10.1016/j.vaccine.2009.04.076. Epub 2009 May 14.

PMID:
19410619
10.

Combining molecular dynamics with bayesian analysis to predict and evaluate ligand-binding mutations in influenza hemagglutinin.

Kasson PM, Ensign DL, Pande VS.

J Am Chem Soc. 2009 Aug 19;131(32):11338-40. doi: 10.1021/ja904557w.

11.

Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

Xu R, de Vries RP, Zhu X, Nycholat CM, McBride R, Yu W, Paulson JC, Wilson IA.

Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.

12.

The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study.

Mir-Shekari SY, Ashford DA, Harvey DJ, Dwek RA, Schulze IT.

J Biol Chem. 1997 Feb 14;272(7):4027-36.

13.

Insights into the human glycan receptor conformation of 1918 pandemic hemagglutinin-glycan complexes derived from nuclear magnetic resonance and molecular dynamics studies.

Elli S, Macchi E, Rudd TR, Raman R, Sassaki G, Viswanathan K, Yates EA, Shriver Z, Naggi A, Torri G, Sasisekharan R, Guerrini M.

Biochemistry. 2014 Jul 1;53(25):4122-35. doi: 10.1021/bi500338r. Epub 2014 Jun 20.

14.

Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions.

Shriver Z, Raman R, Viswanathan K, Sasisekharan R.

Chem Biol. 2009 Aug 28;16(8):803-14. doi: 10.1016/j.chembiol.2009.08.002.

15.

Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus.

Carbone V, Schneider EK, Rockman S, Baker M, Huang JX, Ong C, Cooper MA, Yuriev E, Li J, Velkov T.

Molecules. 2015 Jun 5;20(6):10415-34. doi: 10.3390/molecules200610415.

16.

Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin.

Kobayashi Y, Suzuki Y.

J Virol. 2012 Apr;86(7):3446-51. doi: 10.1128/JVI.06147-11. Epub 2012 Jan 18.

17.

The structural variability of the influenza A hemagglutinin receptor-binding site.

Lazniewski M, Dawson WK, Szczepinska T, Plewczynski D.

Brief Funct Genomics. 2018 Nov 26;17(6):415-427. doi: 10.1093/bfgp/elx042. Review.

18.

Influenza hemagglutinin and neuraminidase membrane glycoproteins.

Gamblin SJ, Skehel JJ.

J Biol Chem. 2010 Sep 10;285(37):28403-9. doi: 10.1074/jbc.R110.129809. Epub 2010 Jun 10. Review.

19.

Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.

Byrd-Leotis L, Liu R, Bradley KC, Lasanajak Y, Cummings SF, Song X, Heimburg-Molinaro J, Galloway SE, Culhane MR, Smith DF, Steinhauer DA, Cummings RD.

Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2241-50. doi: 10.1073/pnas.1323162111. Epub 2014 May 19.

20.

The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity.

Lee N, Khalenkov AM, Lugovtsev VY, Ireland DD, Samsonova AP, Bovin NV, Donnelly RP, Ilyushina NA.

PLoS One. 2018 Apr 9;13(4):e0195525. doi: 10.1371/journal.pone.0195525. eCollection 2018.

Supplemental Content

Support Center