Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia.

Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, Yu X.

J Theor Biol. 2008 Sep 21;254(2):466-75. doi: 10.1016/j.jtbi.2008.05.033. Epub 2008 Jul 7.

2.

Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.

Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME.

J Physiol. 2005 Dec 15;569(Pt 3):925-37. Epub 2005 Oct 13.

3.

Mitochondrial transporter responsiveness and metabolic flux homeostasis in postischemic hearts.

O'Donnell JM, White LT, Lewandowski ED.

Am J Physiol. 1999 Sep;277(3 Pt 2):H866-73.

4.

Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool.

Yu X, White LT, Alpert NM, Lewandowski ED.

Biochemistry. 1996 May 28;35(21):6963-8.

PMID:
8639648
5.

Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia.

Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME.

Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2400-11. Epub 2005 Jan 28.

7.

Regulation of cytosolic and mitochondrial oxidation via malate-aspartate shuttle: an observation using dynamic ¹³C NMR spectroscopy.

Lu M, Banerjee S, Saidel GM, Yu X.

Adv Exp Med Biol. 2011;701:185-92. doi: 10.1007/978-1-4419-7756-4_25.

8.

Impaired cytosolic NADH shuttling and elevated UCP3 contribute to inefficient citric acid cycle flux support of postischemic cardiac work in diabetic hearts.

Banke NH, Lewandowski ED.

J Mol Cell Cardiol. 2015 Feb;79:13-20. doi: 10.1016/j.yjmcc.2014.10.015. Epub 2014 Nov 5.

9.

Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle: Implications for Neuronal Energy Metabolism.

Satrústegui J, Bak LK.

Neurochem Res. 2015 Dec;40(12):2425-30. doi: 10.1007/s11064-015-1652-8. Epub 2015 Jul 3. Review.

PMID:
26138554
10.

Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle.

Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE.

Cardiovasc Res. 2011 Aug 1;91(3):382-91. doi: 10.1093/cvr/cvr051. Epub 2011 Feb 23. Review.

PMID:
21349875
11.

Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria.

Scholz TD, Koppenhafer SL, tenEyck CJ, Schutte BC.

Am J Physiol. 1998 Mar;274(3 Pt 1):C780-8.

12.

Correlation between myocardial malate/aspartate shuttle activity and EAAT1 protein expression in hyper- and hypothyroidism.

Ralphe JC, Bedell K, Segar JL, Scholz TD.

Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2521-6. Epub 2004 Dec 22.

13.

Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.

Berry MN, Phillips JW, Gregory RB, Grivell AR, Wallace PG.

Biochim Biophys Acta. 1992 Sep 9;1136(3):223-30.

PMID:
1520699
15.

Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.

Grivell AR, Korpelainen EI, Williams CJ, Berry MN.

Biochem J. 1995 Sep 1;310 ( Pt 2):665-71.

16.
17.

The cardioprotective effect of sildenafil is mediated by the activation of malate dehydrogenase and an increase in the malate-aspartate shuttle in cardiomyocytes.

Gevi F, Campolo F, Naro F, Zolla L.

Biochem Pharmacol. 2017 Mar 1;127:60-70. doi: 10.1016/j.bcp.2016.12.017. Epub 2016 Dec 23.

PMID:
28017777
18.

Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.

Williamson JR, Safer B, LaNoue KF, Smith CM, Walajtys E.

Symp Soc Exp Biol. 1973;27:241-81. Review. No abstract available.

PMID:
4358367
19.

Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice.

Wu JL, Wu QP, Huang JM, Chen R, Cai M, Tan JB.

Physiol Res. 2007;56(2):213-20. Epub 2006 Mar 23.

20.

Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.

McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U.

Biochem Pharmacol. 2006 Feb 14;71(4):399-407. Epub 2005 Dec 20. Review.

PMID:
16368075

Supplemental Content

Support Center