Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease.

Dagda RK, Zhu J, Kulich SM, Chu CT.

Autophagy. 2008 Aug;4(6):770-82. Epub 2008 Jun 16.

2.

Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways.

Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D, Kanki T.

Autophagy. 2015;11(2):332-43. doi: 10.1080/15548627.2015.1023047.

3.

Promotion of autophagy at the maturation step by IL-6 is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity.

Li XZ, Sui CY, Chen Q, Chen XP, Zhang H, Zhou XP.

Mol Cell Biochem. 2013 Aug;380(1-2):219-27. doi: 10.1007/s11010-013-1676-9. Epub 2013 May 16.

PMID:
23677697
4.

Compensatory activation of ERK1/2 in Atg5-deficient mouse embryo fibroblasts suppresses oxidative stress-induced cell death.

Pyo JO, Nah J, Kim HJ, Lee HJ, Heo J, Lee H, Jung YK.

Autophagy. 2008 Apr;4(3):315-21. Epub 2008 Jan 7.

PMID:
18196969
5.
6.

Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence.

Shin J, Yang J, Lee JC, Baek KH.

Cell Signal. 2013 Dec;25(12):2540-7. doi: 10.1016/j.cellsig.2013.08.014. Epub 2013 Aug 30.

PMID:
23993963
7.

Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.

Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT.

J Neurochem. 2008 May;105(3):1048-56. doi: 10.1111/j.1471-4159.2008.05217.x. Epub 2008 Jan 7.

8.

Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection.

Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V.

Autophagy. 2015;11(7):1063-80. doi: 10.1080/15548627.2015.1058683.

9.

Gonadotropin-releasing hormone and protein kinase C signaling to ERK: spatiotemporal regulation of ERK by docking domains and dual-specificity phosphatases.

Armstrong SP, Caunt CJ, McArdle CA.

Mol Endocrinol. 2009 Apr;23(4):510-9. doi: 10.1210/me.2008-0333. Epub 2009 Jan 29.

PMID:
19179479
11.

A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation.

Robinson MJ, Stippec SA, Goldsmith E, White MA, Cobb MH.

Curr Biol. 1998 Oct 22;8(21):1141-50.

12.

Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation.

Kim I, Lemasters JJ.

Am J Physiol Cell Physiol. 2011 Feb;300(2):C308-17. doi: 10.1152/ajpcell.00056.2010. Epub 2010 Nov 24.

13.

Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells.

Arsikin K, Kravic-Stevovic T, Jovanovic M, Ristic B, Tovilovic G, Zogovic N, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L.

Biochim Biophys Acta. 2012 Nov;1822(11):1826-36. doi: 10.1016/j.bbadis.2012.08.006. Epub 2012 Aug 16.

14.
17.

The roles of cyclic AMP-ERK-Bad signaling pathways on 6-hydroxydopamine-induced cell survival and death in PC12 cells.

Park HJ, Park KH, Shin KS, Lee MK.

Toxicol In Vitro. 2013 Dec;27(8):2233-41. doi: 10.1016/j.tiv.2013.09.014. Epub 2013 Sep 20.

PMID:
24055892
18.

Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling.

Hong SK, Yoon S, Moelling C, Arthan D, Park JI.

J Biol Chem. 2009 Nov 27;284(48):33006-18. doi: 10.1074/jbc.M109.012591. Epub 2009 Oct 5.

19.

Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.

Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D, Riess O, Kahle PJ, Proikas-Cezanne T, Krüger R.

PLoS One. 2010 Feb 23;5(2):e9367. doi: 10.1371/journal.pone.0009367.

20.

Supplemental Content

Support Center