Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity.

Davies MN, O'Callaghan BL, Towle HC.

J Biol Chem. 2008 Aug 29;283(35):24029-38. doi: 10.1074/jbc.M801539200. Epub 2008 Jun 30.

2.

ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells.

Boergesen M, Poulsen Ll, Schmidt SF, Frigerio F, Maechler P, Mandrup S.

J Biol Chem. 2011 Apr 15;286(15):13214-25. doi: 10.1074/jbc.M110.215467. Epub 2011 Jan 31.

3.

Activation and repression of glucose-stimulated ChREBP requires the concerted action of multiple domains within the MondoA conserved region.

Davies MN, O'Callaghan BL, Towle HC.

Am J Physiol Endocrinol Metab. 2010 Oct;299(4):E665-74. doi: 10.1152/ajpendo.00349.2010. Epub 2010 Aug 3.

4.

Flightless I homolog negatively regulates ChREBP activity in cancer cells.

Wu L, Chen H, Zhu Y, Meng J, Li Y, Li M, Yang D, Zhang P, Feng M, Tong X.

Int J Biochem Cell Biol. 2013 Nov;45(11):2688-97. doi: 10.1016/j.biocel.2013.09.004. Epub 2013 Sep 17.

PMID:
24055811
5.

Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation.

Sakiyama H, Wynn RM, Lee WR, Fukasawa M, Mizuguchi H, Gardner KH, Repa JJ, Uyeda K.

J Biol Chem. 2008 Sep 5;283(36):24899-908. doi: 10.1074/jbc.M804308200. Epub 2008 Jul 7.

6.

High glucose-induced O-GlcNAcylated carbohydrate response element-binding protein (ChREBP) mediates mesangial cell lipogenesis and fibrosis: the possible role in the development of diabetic nephropathy.

Park MJ, Kim DI, Lim SK, Choi JH, Han HJ, Yoon KC, Park SH.

J Biol Chem. 2014 May 9;289(19):13519-30. doi: 10.1074/jbc.M113.530139. Epub 2014 Mar 10.

7.

Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver.

Dentin R, Tomas-Cobos L, Foufelle F, Leopold J, Girard J, Postic C, Ferré P.

J Hepatol. 2012 Jan;56(1):199-209. doi: 10.1016/j.jhep.2011.07.019. Epub 2011 Aug 9.

PMID:
21835137
8.

Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3.

Li MV, Chen W, Poungvarin N, Imamura M, Chan L.

Mol Endocrinol. 2008 Jul;22(7):1658-72. doi: 10.1210/me.2007-0560. Epub 2008 Apr 24.

9.

Importin-alpha protein binding to a nuclear localization signal of carbohydrate response element-binding protein (ChREBP).

Ge Q, Nakagawa T, Wynn RM, Chook YM, Miller BC, Uyeda K.

J Biol Chem. 2011 Aug 12;286(32):28119-27. doi: 10.1074/jbc.M111.237016. Epub 2011 Jun 10.

10.

Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site.

Fukasawa M, Ge Q, Wynn RM, Ishii S, Uyeda K.

Biochem Biophys Res Commun. 2010 Jan 8;391(2):1166-9. doi: 10.1016/j.bbrc.2009.11.115. Epub 2009 Dec 17.

PMID:
20025850
11.
12.

A novel N-terminal domain may dictate the glucose response of Mondo proteins.

McFerrin LG, Atchley WR.

PLoS One. 2012;7(4):e34803. doi: 10.1371/journal.pone.0034803. Epub 2012 Apr 10.

13.

ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells.

Yu Y, Maguire TG, Alwine JC.

Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1951-6. doi: 10.1073/pnas.1310779111. Epub 2014 Jan 21.

14.

Identification and function of phosphorylation in the glucose-regulated transcription factor ChREBP.

Tsatsos NG, Davies MN, O'Callaghan BL, Towle HC.

Biochem J. 2008 Apr 15;411(2):261-70. doi: 10.1042/BJ20071156.

PMID:
18215143
15.

Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR.

Sato S, Jung H, Nakagawa T, Pawlosky R, Takeshima T, Lee WR, Sakiyama H, Laxman S, Wynn RM, Tu BP, MacMillan JB, De Brabander JK, Veech RL, Uyeda K.

J Biol Chem. 2016 May 13;291(20):10515-27. doi: 10.1074/jbc.M115.708982. Epub 2016 Mar 16.

16.

The role of O-linked GlcNAc modification on the glucose response of ChREBP.

Sakiyama H, Fujiwara N, Noguchi T, Eguchi H, Yoshihara D, Uyeda K, Suzuki K.

Biochem Biophys Res Commun. 2010 Nov 26;402(4):784-9. doi: 10.1016/j.bbrc.2010.10.113. Epub 2010 Oct 29.

PMID:
21036147
17.

Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module.

Li MV, Chang B, Imamura M, Poungvarin N, Chan L.

Diabetes. 2006 May;55(5):1179-89.

18.

c-Myc is required for the CHREBP-dependent activation of glucose-responsive genes.

Zhang P, Metukuri MR, Bindom SM, Prochownik EV, O'Doherty RM, Scott DK.

Mol Endocrinol. 2010 Jun;24(6):1274-86. doi: 10.1210/me.2009-0437. Epub 2010 Apr 9.

19.

Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes.

Ma L, Tsatsos NG, Towle HC.

J Biol Chem. 2005 Mar 25;280(12):12019-27. Epub 2005 Jan 20.

20.

Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer.

Peterson CW, Stoltzman CA, Sighinolfi MP, Han KS, Ayer DE.

Mol Cell Biol. 2010 Jun;30(12):2887-95. doi: 10.1128/MCB.01613-09. Epub 2010 Apr 12.

Supplemental Content

Support Center