Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Mass spectrometry analysis of proteome-wide proteolytic post-translational degradation of proteins.

Shen Y, Hixson KK, Tolić N, Camp DG, Purvine SO, Moore RJ, Smith RD.

Anal Chem. 2008 Aug 1;80(15):5819-28. doi: 10.1021/ac800077w. Epub 2008 Jun 26.

2.

Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.

Bailey UM, Schulz BL.

J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Apr 1;923-924:16-21. doi: 10.1016/j.jchromb.2013.01.026. Epub 2013 Feb 4.

PMID:
23454304
3.

Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover.

Swaney DL, Rodríguez-Mias RA, Villén J.

EMBO Rep. 2015 Sep;16(9):1131-44. doi: 10.15252/embr.201540298. Epub 2015 Jul 3.

4.

Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.

Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J, Gevaert K.

J Proteome Res. 2011 Aug 5;10(8):3578-89. doi: 10.1021/pr2002325. Epub 2011 Jun 20.

PMID:
21619078
5.

Combination of Edman degradation of peptides with liquid chromatography/mass spectrometry workflow for peptide identification in bottom-up proteomics.

Lobas AA, Verenchikov AN, Goloborodko AA, Levitsky LI, Gorshkov MV.

Rapid Commun Mass Spectrom. 2013 Feb 15;27(3):391-400. doi: 10.1002/rcm.6462.

PMID:
23280970
6.

Analysis of ubiquitinated proteome by quantitative mass spectrometry.

Na CH, Peng J.

Methods Mol Biol. 2012;893:417-29. doi: 10.1007/978-1-61779-885-6_26.

7.

Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo.

Kanemaki M, Sanchez-Diaz A, Gambus A, Labib K.

Nature. 2003 Jun 12;423(6941):720-4. Epub 2003 May 25.

PMID:
12768207
9.

Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry.

Schopper S, Kahraman A, Leuenberger P, Feng Y, Piazza I, Müller O, Boersema PJ, Picotti P.

Nat Protoc. 2017 Nov;12(11):2391-2410. doi: 10.1038/nprot.2017.100. Epub 2017 Oct 26.

PMID:
29072706
10.

Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae.

Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C.

Mol Cell Proteomics. 2012 Nov;11(11):1510-22. doi: 10.1074/mcp.M112.017251. Epub 2012 Aug 2.

11.

Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system.

de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M.

Genome Biol. 2006;7(6):R50.

12.

Label-Free Quantitative Proteomics in Yeast.

Léger T, Garcia C, Videlier M, Camadro JM.

Methods Mol Biol. 2016;1361:289-307. doi: 10.1007/978-1-4939-3079-1_16.

PMID:
26483028
13.

Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55.

Venne AS, Vögtle FN, Meisinger C, Sickmann A, Zahedi RP.

J Proteome Res. 2013 Sep 6;12(9):3823-30. doi: 10.1021/pr400435d. Epub 2013 Aug 21.

PMID:
23964590
14.

Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation.

Lin D, Li J, Slebos RJ, Liebler DC.

J Proteome Res. 2010 Oct 1;9(10):5461-72. doi: 10.1021/pr1007015.

15.

Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells.

Iesmantavicius V, Weinert BT, Choudhary C.

Mol Cell Proteomics. 2014 Aug;13(8):1979-92. doi: 10.1074/mcp.O113.035683. Epub 2014 Jun 24.

16.

System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.

Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M.

Mol Cell Proteomics. 2012 Mar;11(3):M111.013722. doi: 10.1074/mcp.M111.013722. Epub 2011 Oct 20.

17.

Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.

Paulo JA, O'Connell JD, Gaun A, Gygi SP.

Mol Biol Cell. 2015 Nov 5;26(22):4063-74. doi: 10.1091/mbc.E15-07-0499. Epub 2015 Sep 23.

18.

Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

Valero ML, Sendra R, Pamblanco M.

J Proteomics. 2016 Mar 16;136:183-92. doi: 10.1016/j.jprot.2016.01.004. Epub 2016 Jan 9.

PMID:
26778144
19.

Semi-supervised learning for peptide identification from shotgun proteomics datasets.

Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ.

Nat Methods. 2007 Nov;4(11):923-5. Epub 2007 Oct 21.

PMID:
17952086
20.

Neutron-encoded mass signatures for multiplexed proteome quantification.

Hebert AS, Merrill AE, Bailey DJ, Still AJ, Westphall MS, Strieter ER, Pagliarini DJ, Coon JJ.

Nat Methods. 2013 Apr;10(4):332-4. doi: 10.1038/nmeth.2378. Epub 2013 Feb 24.

Supplemental Content

Support Center