Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

The amphioxus genome and the evolution of the chordate karyotype.

Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS.

Nature. 2008 Jun 19;453(7198):1064-71. doi: 10.1038/nature06967.

PMID:
18563158
2.

Evolution of the Sox gene family within the chordate phylum.

Heenan P, Zondag L, Wilson MJ.

Gene. 2016 Jan 10;575(2 Pt 2):385-392. doi: 10.1016/j.gene.2015.09.013. Epub 2015 Sep 8.

PMID:
26361847
3.

The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution.

Ebner B, Panopoulou G, Vinogradov SN, Kiger L, Marden MC, Burmester T, Hankeln T.

BMC Evol Biol. 2010 Nov 30;10:370. doi: 10.1186/1471-2148-10-370.

4.
5.

Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences.

Cañestro C, Albalat R.

Brief Funct Genomics. 2012 Mar;11(2):131-41. doi: 10.1093/bfgp/els010. Epub 2012 Mar 2. Review.

PMID:
22389043
6.

How much does the amphioxus genome represent the ancestor of chordates?

Louis A, Roest Crollius H, Robinson-Rechavi M.

Brief Funct Genomics. 2012 Mar;11(2):89-95. doi: 10.1093/bfgp/els003. Epub 2012 Feb 28. Review.

7.

Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.

Gillis WQ, St John J, Bowerman B, Schneider SQ.

BMC Evol Biol. 2009 Aug 20;9:207. doi: 10.1186/1471-2148-9-207.

8.

The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution.

Yue JX, Yu JK, Putnam NH, Holland LZ.

Genome Biol Evol. 2014 Sep 19;6(10):2681-96. doi: 10.1093/gbe/evu212.

9.

The amphioxus genome illuminates vertebrate origins and cephalochordate biology.

Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW.

Genome Res. 2008 Jul;18(7):1100-11. doi: 10.1101/gr.073676.107. Epub 2008 Jun 18. Erratum in: Genome Res. 2008 Aug;18(8):1380.

10.

Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective.

Coppola U, Annona G, D'Aniello S, Ristoratore F.

BMC Evol Biol. 2016 Jan 27;16:26. doi: 10.1186/s12862-016-0596-1.

11.

Evolution of retinoid and steroid signaling: vertebrate diversification from an amphioxus perspective.

Albalat R, Brunet F, Laudet V, Schubert M.

Genome Biol Evol. 2011;3:985-1005. doi: 10.1093/gbe/evr084. Epub 2011 Aug 18.

12.

Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention.

Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G.

Genome Res. 2009 Nov;19(11):2036-51. doi: 10.1101/gr.093237.109. Epub 2009 Aug 24.

13.

Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement.

Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G.

Genome Res. 2008 Oct;18(10):1582-91. doi: 10.1101/gr.080119.108. Epub 2008 Jul 14.

14.

Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.

Huang S, Chen Z, Yan X, Yu T, Huang G, Yan Q, Pontarotti PA, Zhao H, Li J, Yang P, Wang R, Li R, Tao X, Deng T, Wang Y, Li G, Zhang Q, Zhou S, You L, Yuan S, Fu Y, Wu F, Dong M, Chen S, Xu A.

Nat Commun. 2014 Dec 19;5:5896. doi: 10.1038/ncomms6896.

15.
16.

It's a long way from amphioxus: descendants of the earliest chordate.

Garcia-Fernàndez J, Benito-Gutiérrez E.

Bioessays. 2009 Jun;31(6):665-75. doi: 10.1002/bies.200800110.

PMID:
19408244
17.
18.

Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution.

Pébusque MJ, Coulier F, Birnbaum D, Pontarotti P.

Mol Biol Evol. 1998 Sep;15(9):1145-59.

PMID:
9729879
19.

A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

Paps J, Holland PW, Shimeld SM.

Brief Funct Genomics. 2012 Mar;11(2):177-86. doi: 10.1093/bfgp/els012. Review.

PMID:
22441554
20.

Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.

Harduin-Lepers A, Petit D, Mollicone R, Delannoy P, Petit JM, Oriol R.

BMC Evol Biol. 2008 Sep 23;8:258. doi: 10.1186/1471-2148-8-258.

Supplemental Content

Support Center