Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 172

1.

Investigation of binding mechanisms of nuclear proteins using confocal scanning laser microscopy and FRAP.

Tsibidis GD, Ripoll J.

J Theor Biol. 2008 Aug 21;253(4):755-68. doi: 10.1016/j.jtbi.2008.04.010. Epub 2008 Apr 18.

PMID:
18538796
2.
3.

Improving parameter estimation for cell surface FRAP data.

Dushek O, Coombs D.

J Biochem Biophys Methods. 2008 Apr 24;70(6):1224-31. Epub 2007 Jul 19.

PMID:
17707082
4.
5.

Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells.

van Royen ME, Farla P, Mattern KA, Geverts B, Trapman J, Houtsmuller AB.

Methods Mol Biol. 2009;464:363-85. doi: 10.1007/978-1-60327-461-6_20.

PMID:
18951195
6.

Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments.

Mazza D, Cella F, Vicidomini G, Krol S, Diaspro A.

Appl Opt. 2007 Oct 20;46(30):7401-11.

PMID:
17952174
7.

A finite element model for protein transport in vivo.

Sadegh Zadeh K, Elman HC, Montas HJ, Shirmohammadi A.

Biomed Eng Online. 2007 Jun 28;6:24.

8.

Fluorescence recovery after photobleaching: application to nuclear proteins.

Houtsmuller AB.

Adv Biochem Eng Biotechnol. 2005;95:177-99. Review.

PMID:
16080269
9.

Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope.

Braeckmans K, Peeters L, Sanders NN, De Smedt SC, Demeester J.

Biophys J. 2003 Oct;85(4):2240-52.

10.

A mathematical model of actin filament turnover for fitting FRAP data.

Halavatyi AA, Nazarov PV, Al Tanoury Z, Apanasovich VV, Yatskou M, Friederich E.

Eur Biophys J. 2010 Mar;39(4):669-77. doi: 10.1007/s00249-009-0558-2. Epub 2009 Nov 18.

PMID:
19921173
11.

Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events.

Carrero G, Crawford E, Hendzel MJ, de Vries G.

Bull Math Biol. 2004 Nov;66(6):1515-45.

PMID:
15522344
12.

Confocal fluorescence recovery after photobleaching of green fluorescent protein in solution.

Pucadyil TJ, Chattopadhyay A.

J Fluoresc. 2006 Jan;16(1):87-94. Epub 2006 Jan 6.

PMID:
16397826
13.

Methods for measuring rates of protein binding to insoluble scaffolds in living cells: histone H1-chromatin interactions.

Lele T, Wagner SR, Nickerson JA, Ingber DE.

J Cell Biochem. 2006 Dec 1;99(5):1334-42.

PMID:
16795044
14.

Analysis of membrane-localized binding kinetics with FRAP.

Dushek O, Das R, Coombs D.

Eur Biophys J. 2008 Jun;37(5):627-38. doi: 10.1007/s00249-008-0286-z. Epub 2008 Feb 26.

PMID:
18299825
15.

Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching.

Mueller F, Karpova TS, Mazza D, McNally JG.

Methods Mol Biol. 2012;833:153-76. doi: 10.1007/978-1-61779-477-3_11.

PMID:
22183594
16.

Derivation of a closed form analytical expression for fluorescence recovery after photo bleaching in the case of continuous bleaching during read out.

Endress E, Weigelt S, Reents G, Bayerl TM.

Eur Phys J E Soft Matter. 2005 Jan;16(1):81-7. Epub 2005 Jan 31.

PMID:
15688144
17.

Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation--a case study for fluorescein.

Braeckmans K, Stubbe BG, Remaut K, Demeester J, De Smedt SC.

J Biomed Opt. 2006 Jul-Aug;11(4):044013.

PMID:
16965170
18.

Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins.

Carrero G, McDonald D, Crawford E, de Vries G, Hendzel MJ.

Methods. 2003 Jan;29(1):14-28. Review.

PMID:
12543068
20.

Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples.

Braeckmans K, Remaut K, Vandenbroucke RE, Lucas B, De Smedt SC, Demeester J.

Biophys J. 2007 Mar 15;92(6):2172-83. Epub 2007 Jan 5.

Supplemental Content

Support Center