Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 553

1.

Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species.

Lee J, Yamakoshi Y, Hughes JB, Kim JH.

Environ Sci Technol. 2008 May 1;42(9):3459-64.

PMID:
18522134
2.

Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation.

Lee J, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2007 Apr 1;41(7):2529-35.

PMID:
17438811
3.

Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60).

Markovic Z, Trajkovic V.

Biomaterials. 2008 Sep;29(26):3561-73. doi: 10.1016/j.biomaterials.2008.05.005. Epub 2008 Jun 4. Review.

PMID:
18534675
4.
5.

Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.

Hotze EM, Labille J, Alvarez P, Wiesner MR.

Environ Sci Technol. 2008 Jun 1;42(11):4175-80.

PMID:
18589984
6.

Translocation of C(60) from aqueous stable colloidal aggregates into surfactant micelles.

Zhang B, Cho M, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Dec 15;43(24):9124-9. doi: 10.1021/es9026369.

PMID:
19928758
7.
8.

Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.

Lee I, Mackeyev Y, Cho M, Li D, Kim JH, Wilson LJ, Alvarez PJ.

Environ Sci Technol. 2009 Sep 1;43(17):6604-10.

PMID:
19764224
9.

Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution.

Clements AF, Haley JE, Urbas AM, Kost A, Rauh RD, Bertone JF, Wang F, Wiers BM, Gao D, Stefanik TS, Mott AG, Mackie DM.

J Phys Chem A. 2009 Jun 11;113(23):6437-45. doi: 10.1021/jp8102518.

PMID:
19441808
10.

Activation of electron-transfer reduction of oxygen by hydrogen bond formation of superoxide anion with ammonium ion.

Ohkubo K, Kitaguchi H, Fukuzumi S.

J Phys Chem A. 2006 Oct 19;110(41):11613-6.

PMID:
17034154
11.

Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.

Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T.

J Am Chem Soc. 2003 Oct 22;125(42):12803-9.

PMID:
14558828
12.

Transformation of aggregated C60 in the aqueous phase by UV irradiation.

Lee J, Cho M, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Jul 1;43(13):4878-83.

PMID:
19673279
13.

A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water.

Li H, Jia X, Li Y, Shi X, Hao J.

J Phys Chem B. 2006 Jan 12;110(1):68-74.

PMID:
16471501
14.

Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase.

Li Y, Niu J, Shang E, Crittenden JC.

Environ Sci Technol. 2015 Jan 20;49(2):965-73.

PMID:
25536151
15.

Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

Fukuzumi S, Ohkubo K, Zheng X, Chen Y, Pandey RK, Zhan R, Kadish KM.

J Phys Chem B. 2008 Mar 6;112(9):2738-46. doi: 10.1021/jp0766757. Epub 2008 Feb 7.

PMID:
18254618
16.

Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.

Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR.

Environ Sci Technol. 2009 Jun 15;43(12):4355-60.

PMID:
19603646
17.
19.

Photoinduced intermolecular electron transfer process of fullerene (C60) and amine-substituted fluorenes studied by laser flash photolysis.

El-Khouly ME.

Spectrochim Acta A Mol Biomol Spectrosc. 2007 Jul;67(3-4):636-42. Epub 2006 Aug 22.

PMID:
17005443
20.

The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide.

Vakrat-Haglili Y, Weiner L, Brumfeld V, Brandis A, Salomon Y, McLlroy B, Wilson BC, Pawlak A, Rozanowska M, Sarna T, Scherz A.

J Am Chem Soc. 2005 May 4;127(17):6487-97.

PMID:
15853357

Supplemental Content

Support Center