Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis.

Brustlein S, Del Rio L, Tonello A, Delage L, Reynaud F, Herrmann H, Sohler W.

Phys Rev Lett. 2008 Apr 18;100(15):153903. Epub 2008 Apr 16.

PMID:
18518109
2.

Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer.

Gomes JT, Delage L, Baudoin R, Grossard L, Bouyeron L, Ceus D, Reynaud F, Herrmann H, Sohler W.

Phys Rev Lett. 2014 Apr 11;112(14):143904. Epub 2014 Apr 11.

PMID:
24765966
3.

Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging.

Ceus D, Tonello A, Grossard L, Delage L, Reynaud F, Herrmann H, Sohler W.

Opt Express. 2011 Apr 25;19(9):8616-24. doi: 10.1364/OE.19.008616.

PMID:
21643113
4.

Statistically background-free, phase-preserving parametric up-conversion with faint light.

Cheng YH, Thomay T, Solomon GS, Migdall AL, Polyakov SV.

Opt Express. 2015 Jul 13;23(14):18671-8. doi: 10.1364/OE.23.018671.

PMID:
26191926
5.

Demonstration of a frequency spectral compression effect through an up-conversion interferometer.

Gomes JT, Grossard L, Ceus D, Vergnole S, Delage L, Reynaud F, Herrmann H, Sohler W.

Opt Express. 2013 Feb 11;21(3):3073-82. doi: 10.1364/OE.21.003073.

PMID:
23481765
6.

High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide.

Ming L, Gawith C, Gallo K, O'Connor M, Emmerson G, Smith P.

Opt Express. 2005 Jun 27;13(13):4862-8.

PMID:
19498472
7.

Phase-regenerative wavelength conversion in periodically poled lithium niobate waveguides.

Liu S, Lee KJ, Parmigiani F, Kakande J, Gallo K, Petropoulos P, Richardson DJ.

Opt Express. 2011 Jun 6;19(12):11705-15. doi: 10.1364/OE.19.011705.

PMID:
21716402
8.

Multiband generation of mid infrared by use of periodically poled lithium niobate.

Chuang T, Burnham R.

Opt Lett. 1998 Jan 1;23(1):43-5.

PMID:
18084406
9.

Frequency conversion of structured light.

Steinlechner F, Hermosa N, Pruneri V, Torres JP.

Sci Rep. 2016 Feb 15;6:21390. doi: 10.1038/srep21390.

10.

Waveguide-based single-pixel up-conversion infrared spectrometer.

Zhang Q, Langrock C, Fejer MM, Yamamoto Y.

Opt Express. 2008 Nov 24;16(24):19557-61.

PMID:
19030042
11.
12.

Time-to-space conversion of ultrafast waveforms at 1.55 μm in a planar periodically poled lithium niobate waveguide.

Shayovitz D, Herrmann H, Sohler W, Ricken R, Silberhorn C, Marom DM.

Opt Lett. 2013 Nov 15;38(22):4708-11. doi: 10.1364/OL.38.004708.

PMID:
24322112
13.
14.
15.
16.

Enhanced signal coupling into periodically poled lithium niobate with microlens arrays.

Brewer CD, Powers PE, Kirkpatrick SM, Watson EA.

Appl Opt. 2002 Jul 20;41(21):4411-5.

PMID:
12148773
17.

Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter.

Huang CY, Lin CH, Chen YH, Huang YC.

Opt Express. 2007 Mar 5;15(5):2548-54.

PMID:
19532492
18.
19.

Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides.

Cao Z, Han L, Liang W, Deng L, Wang H, Xu C, Zhang W, Gong Z, Gao X.

Opt Lett. 2007 Jul 1;32(13):1953-5.

PMID:
17603625
20.

Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide.

Ma L, Slattery O, Chang T, Tang X.

Opt Express. 2009 Aug 31;17(18):15799-807. doi: 10.1364/OE.17.015799.

PMID:
19724580

Supplemental Content

Support Center