Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Multifrequency optical invisibility cloak with layered plasmonic shells.

Alù A, Engheta N.

Phys Rev Lett. 2008 Mar 21;100(11):113901.

PMID:
18517786
2.

Electrically controlled multifrequency ferroelectric cloak.

Li P, Liu Y, Meng Y.

Opt Express. 2010 Jun 7;18(12):12646-52. doi: 10.1364/OE.18.012646.

PMID:
20588391
3.

Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell.

Lai Y, Chen H, Zhang ZQ, Chan CT.

Phys Rev Lett. 2009 Mar 6;102(9):093901.

PMID:
19392518
4.

Homogeneous optical cloak constructed with uniform layered structures.

Zhang J, Liu L, Luo Y, Zhang S, Mortensen NA.

Opt Express. 2011 Apr 25;19(9):8625-31. doi: 10.1364/OE.19.008625.

PMID:
21643114
5.

Simplified ground plane invisibility cloak by multilayer dielectrics.

Xu X, Feng Y, Yu Z, Jiang T, Zhao J.

Opt Express. 2010 Nov 22;18(24):24477-85. doi: 10.1364/OE.18.024477.

PMID:
21164794
6.

Electromagnetic forces on a discrete spherical invisibility cloak under time-harmonic illumination.

Chaumet PC, Rahmani A, Zolla F, Nicolet A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056602.

PMID:
23004890
7.

Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles.

Monti A, Bilotti F, Toscano A.

Opt Lett. 2011 Dec 1;36(23):4479-81. doi: 10.1364/OL.36.004479.

PMID:
22139215
8.
9.

The design and simulated performance of a coated nano-particle laser.

Gordon JA, Ziolkowski RW.

Opt Express. 2007 Mar 5;15(5):2622-53.

PMID:
19532501
10.

Switching from visibility to invisibility via Fano resonances: theory and experiment.

Rybin MV, Filonov DS, Belov PA, Kivshar YS, Limonov MF.

Sci Rep. 2015 Mar 5;5:8774. doi: 10.1038/srep08774.

11.

Free-space carpet cloak using transformation optics and graphene.

Zhang R, Lin X, Shen L, Wang Z, Zheng B, Lin S, Chen H.

Opt Lett. 2014 Dec 1;39(23):6739-42. doi: 10.1364/OL.39.006739.

PMID:
25490666
12.

Effects of size and frequency dispersion in plasmonic cloaking.

Alù A, Engheta N.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):045602.

PMID:
18999485
13.

A near-perfect invisibility cloak constructed with homogeneous materials.

Li W, Guan J, Sun Z, Wang W, Zhang Q.

Opt Express. 2009 Dec 21;17(26):23410-6. doi: 10.1364/OE.17.023410.

PMID:
20052048
14.
15.

Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics.

Ghadarghadr S, Hao Z, Mosallaei H.

Opt Express. 2009 Oct 12;17(21):18556-70. doi: 10.1364/OE.17.018556.

PMID:
20372586
16.

Three-dimensional broadband ground-plane cloak made of metamaterials.

Ma HF, Cui TJ.

Nat Commun. 2010 Jun 1;1:21. doi: 10.1038/ncomms1023.

17.

Metamaterial electromagnetic cloak at microwave frequencies.

Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR.

Science. 2006 Nov 10;314(5801):977-80.

18.

Layered plasmonic cloaks to tailor the optical scattering at the nanoscale.

Monticone F, Argyropoulos C, Alù A.

Sci Rep. 2012;2:912. doi: 10.1038/srep00912.

19.

Thermal invisibility based on scattering cancellation and mantle cloaking.

Farhat M, Chen PY, Bagci H, Amra C, Guenneau S, Alù A.

Sci Rep. 2015 Apr 30;5:9876. doi: 10.1038/srep09876. Erratum in: Sci Rep. 2016;6:19321.

20.

Tuning plasmonic cloaks with an external magnetic field.

Kort-Kamp WJ, Rosa FS, Pinheiro FA, Farina C.

Phys Rev Lett. 2013 Nov 22;111(21):215504.

PMID:
24313504
Items per page

Supplemental Content

Support Center