Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 185

1.

Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion.

Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD.

J Biol Chem. 2008 Jul 25;283(30):21251-66. doi: 10.1074/jbc.M801592200. Epub 2008 May 14.

2.

Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.

Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD.

J Mol Biol. 2008 Nov 7;383(2):403-13. doi: 10.1016/j.jmb.2008.08.034. Epub 2008 Aug 22.

3.

Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes.

Wagner JR, Zhang J, von Stetten D, Günther M, Murgida DH, Mroginski MA, Walker JM, Forest KT, Hildebrandt P, Vierstra RD.

J Biol Chem. 2008 May 2;283(18):12212-26. doi: 10.1074/jbc.M709355200. Epub 2008 Jan 10.

4.

Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.

Zienicke B, Molina I, Glenz R, Singer P, Ehmer D, Escobar FV, Hildebrandt P, Diller R, Lamparter T.

J Biol Chem. 2013 Nov 1;288(44):31738-51. doi: 10.1074/jbc.M113.479535. Epub 2013 Sep 13.

5.

Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors.

Karniol B, Wagner JR, Walker JM, Vierstra RD.

Biochem J. 2005 Nov 15;392(Pt 1):103-16.

6.

Structural basis for the photoconversion of a phytochrome to the activated Pfr form.

Ulijasz AT, Cornilescu G, Cornilescu CC, Zhang J, Rivera M, Markley JL, Vierstra RD.

Nature. 2010 Jan 14;463(7278):250-4. doi: 10.1038/nature08671.

7.

Phytochrome three-dimensional structures and functions.

Hughes J.

Biochem Soc Trans. 2010 Apr;38(2):710-6. doi: 10.1042/BST0380710. Review.

PMID:
20298248
8.

Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.

Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Velazquez Escobar F, Zhang J, Stankey RJ, Rivera M, Hildebrandt P, Vierstra RD.

J Biol Chem. 2009 Oct 23;284(43):29757-72. doi: 10.1074/jbc.M109.038513. Epub 2009 Aug 11.

9.

Light-induced conformational changes of cyanobacterial phytochrome Cph1 probed by limited proteolysis and autophosphorylation.

Esteban B, Carrascal M, Abian J, Lamparter T.

Biochemistry. 2005 Jan 18;44(2):450-61.

PMID:
15641769
10.

The structure of a complete phytochrome sensory module in the Pr ground state.

Essen LO, Mailliet J, Hughes J.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14709-14. doi: 10.1073/pnas.0806477105. Epub 2008 Sep 17.

11.

Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization.

Song C, Narikawa R, Ikeuchi M, Gärtner W, Matysik J.

J Phys Chem B. 2015 Jul 30;119(30):9688-95. doi: 10.1021/acs.jpcb.5b04655. Epub 2015 Jul 9.

PMID:
26115331
12.

Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction.

Yang X, Kuk J, Moffat K.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14715-20. doi: 10.1073/pnas.0806718105. Epub 2008 Sep 17.

13.

Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli.

Yoshihara S, Shimada T, Matsuoka D, Zikihara K, Kohchi T, Tokutomi S.

Biochemistry. 2006 Mar 21;45(11):3775-84.

PMID:
16533061
14.

Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.

Lamparter T, Michael N.

Biochemistry. 2005 Jun 14;44(23):8461-9.

PMID:
15938635
15.

Molecular dynamics of phycocyanobilin binding bacteriophytochromes: a detailed study of structural and dynamic properties.

Kaminski S, Mroginski MA.

J Phys Chem B. 2010 Dec 23;114(50):16677-86. doi: 10.1021/jp104903u. Epub 2010 Dec 2.

PMID:
21126042
16.

Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state.

Heyes DJ, Khara B, Sakuma M, Hardman SJ, O'Cualain R, Rigby SE, Scrutton NS.

PLoS One. 2012;7(12):e52418. doi: 10.1371/journal.pone.0052418. Epub 2012 Dec 26.

17.

Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs.

Anders K, Gutt A, Gärtner W, Essen LO.

J Biol Chem. 2014 Sep 12;289(37):25590-600. doi: 10.1074/jbc.M114.562082. Epub 2014 Jul 10.

18.
19.

A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion.

Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M.

J Mol Biol. 2008 Jul 25;380(5):844-55. doi: 10.1016/j.jmb.2008.05.035. Epub 2008 May 22.

PMID:
18571200
20.

Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD.

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10179-84. doi: 10.1073/pnas.1403096111. Epub 2014 Jun 30.

Supplemental Content

Support Center