Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans.

Weissman Z, Shemer R, Conibear E, Kornitzer D.

Mol Microbiol. 2008 Jul;69(1):201-17. doi: 10.1111/j.1365-2958.2008.06277.x. Epub 2008 May 5.

2.

A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization.

Weissman Z, Kornitzer D.

Mol Microbiol. 2004 Aug;53(4):1209-20. Erratum in: Mol Microbiol. 2005 Sep;57(6):1808.

4.

Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin.

Santos R, Buisson N, Knight SA, Dancis A, Camadro JM, Lesuisse E.

Mol Microbiol. 2004 Oct;54(2):507-19.

5.
6.

Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae.

Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S, Jiang B, Kaplan J.

J Biol Chem. 2001 Nov 16;276(46):43049-55. Epub 2001 Sep 18.

7.
8.

Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth.

Okamoto-Shibayama K, Kikuchi Y, Kokubu E, Sato Y, Ishihara K.

FEMS Yeast Res. 2014 Jun;14(4):674-7. doi: 10.1111/1567-1364.12160. Epub 2014 May 23.

9.

Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation.

García MG, O'Connor JE, García LL, Martínez SI, Herrero E, del Castillo Agudo L.

Yeast. 2001 Mar 15;18(4):301-11.

10.

Genome-wide identification of fungal GPI proteins.

De Groot PW, Hellingwerf KJ, Klis FM.

Yeast. 2003 Jul 15;20(9):781-96.

11.

Iron restriction-induced adaptations in the wall proteome of Candida albicans.

Sorgo AG, Brul S, de Koster CG, de Koning LJ, Klis FM.

Microbiology. 2013 Aug;159(Pt 8):1673-82. doi: 10.1099/mic.0.065599-0. Epub 2013 May 31.

PMID:
23728625
12.
13.

A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D.

PLoS Pathog. 2014 Oct 2;10(10):e1004407. doi: 10.1371/journal.ppat.1004407. eCollection 2014 Oct.

14.
15.

Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis.

Martin R, Hellwig D, Schaub Y, Bauer J, Walther A, Wendland J.

Yeast. 2007 Jun;24(6):511-22.

16.

A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4.

Lee SA, Jones J, Khalique Z, Kot J, Alba M, Bernardo S, Seghal A, Wong B.

FEMS Yeast Res. 2007 Sep;7(6):973-85. Epub 2007 May 16.

17.

Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.

Knight SA, Vilaire G, Lesuisse E, Dancis A.

Infect Immun. 2005 Sep;73(9):5482-92.

18.

CCC1 is a transporter that mediates vacuolar iron storage in yeast.

Li L, Chen OS, McVey Ward D, Kaplan J.

J Biol Chem. 2001 Aug 3;276(31):29515-9. Epub 2001 Jun 4.

19.

Analysis of Candida albicans plasma membrane proteome.

Cabezón V, Llama-Palacios A, Nombela C, Monteoliva L, Gil C.

Proteomics. 2009 Oct;9(20):4770-86. doi: 10.1002/pmic.200800988.

PMID:
19824013
20.

Clathrin- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans.

Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, Whiteway M.

MBio. 2013 Aug 27;4(5):e00476-13. doi: 10.1128/mBio.00476-13.

Supplemental Content

Support Center