Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 229

1.

An engineered Saccharomyces cerevisiae strain binds the broadly neutralizing human immunodeficiency virus type 1 antibody 2G12 and elicits mannose-specific gp120-binding antibodies.

Luallen RJ, Lin J, Fu H, Cai KK, Agrawal C, Mboudjeka I, Lee FH, Montefiori D, Smith DF, Doms RW, Geng Y.

J Virol. 2008 Jul;82(13):6447-57. doi: 10.1128/JVI.00412-08. Epub 2008 Apr 23.

2.

A yeast glycoprotein shows high-affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC-SIGN.

Luallen RJ, Fu H, Agrawal-Gamse C, Mboudjeka I, Huang W, Lee FH, Wang LX, Doms RW, Geng Y.

J Virol. 2009 May;83(10):4861-70. doi: 10.1128/JVI.02537-08. Epub 2009 Mar 4.

3.

Yeast-elicited cross-reactive antibodies to HIV Env glycans efficiently neutralize virions expressing exclusively high-mannose N-linked glycans.

Agrawal-Gamse C, Luallen RJ, Liu B, Fu H, Lee FH, Geng Y, Doms RW.

J Virol. 2011 Jan;85(1):470-80. doi: 10.1128/JVI.01349-10. Epub 2010 Oct 20.

4.

Antibodies against Manalpha1,2-Manalpha1,2-Man oligosaccharide structures recognize envelope glycoproteins from HIV-1 and SIV strains.

Luallen RJ, Agrawal-Gamse C, Fu H, Smith DF, Doms RW, Geng Y.

Glycobiology. 2010 Mar;20(3):280-6. doi: 10.1093/glycob/cwp184. Epub 2009 Nov 17.

5.

Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans.

Zhang H, Fu H, Luallen RJ, Liu B, Lee FH, Doms RW, Geng Y.

Vaccine. 2015 Sep 22;33(39):5140-7. doi: 10.1016/j.vaccine.2015.08.012. Epub 2015 Aug 13.

6.

The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1-->2 mannose residues on the outer face of gp120.

Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, Wilson IA, Katinger H, Dwek RA, Rudd PM, Burton DR.

J Virol. 2002 Jul;76(14):7306-21.

7.

A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120.

Astronomo RD, Lee HK, Scanlan CN, Pantophlet R, Huang CY, Wilson IA, Blixt O, Dwek RA, Wong CH, Burton DR.

J Virol. 2008 Jul;82(13):6359-68. doi: 10.1128/JVI.00293-08. Epub 2008 Apr 23.

8.

The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120.

Sanders RW, Venturi M, Schiffner L, Kalyanaraman R, Katinger H, Lloyd KO, Kwong PD, Moore JP.

J Virol. 2002 Jul;76(14):7293-305.

9.

Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope.

Hoorelbeke B, Huskens D, Férir G, François KO, Takahashi A, Van Laethem K, Schols D, Tanaka H, Balzarini J.

Antimicrob Agents Chemother. 2010 Aug;54(8):3287-301. doi: 10.1128/AAC.00254-10. Epub 2010 May 24.

10.

Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans.

Dunlop DC, Bonomelli C, Mansab F, Vasiljevic S, Doores KJ, Wormald MR, Palma AS, Feizi T, Harvey DJ, Dwek RA, Crispin M, Scanlan CN.

Glycobiology. 2010 Jul;20(7):812-23. doi: 10.1093/glycob/cwq020. Epub 2010 Feb 24.

11.

Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies.

Ingale J, Tran K, Kong L, Dey B, McKee K, Schief W, Kwong PD, Mascola JR, Wyatt RT.

J Virol. 2014 Dec;88(24):14002-16. doi: 10.1128/JVI.02614-14. Epub 2014 Sep 24. Erratum in: J Virol. 2015 Jun;89(12):6526.

12.
13.

Antibody 2G12 recognizes di-mannose equivalently in domain- and nondomain-exchanged forms but only binds the HIV-1 glycan shield if domain exchanged.

Doores KJ, Fulton Z, Huber M, Wilson IA, Burton DR.

J Virol. 2010 Oct;84(20):10690-9. doi: 10.1128/JVI.01110-10. Epub 2010 Aug 11.

14.

Concanavalin A binding to HIV envelope protein is less sensitive to mutations in glycosylation sites than monoclonal antibody 2G12.

Pashov A, MacLeod S, Saha R, Perry M, VanCott TC, Kieber-Emmons T.

Glycobiology. 2005 Oct;15(10):994-1001. Epub 2005 May 25.

PMID:
15917430
15.

Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140.

Go EP, Herschhorn A, Gu C, Castillo-Menendez L, Zhang S, Mao Y, Chen H, Ding H, Wakefield JK, Hua D, Liao HX, Kappes JC, Sodroski J, Desaire H.

J Virol. 2015 Aug;89(16):8245-57. doi: 10.1128/JVI.00628-15. Epub 2015 May 27.

16.

HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual.

Coss KP, Vasiljevic S, Pritchard LK, Krumm SA, Glaze M, Madzorera S, Moore PL, Crispin M, Doores KJ.

J Virol. 2016 Nov 28;90(24):11132-11144. Print 2016 Dec 15.

17.

Prime-boost immunization of rabbits with HIV-1 gp120 elicits potent neutralization activity against a primary viral isolate.

Narayan KM, Agrawal N, Du SX, Muranaka JE, Bauer K, Leaman DP, Phung P, Limoli K, Chen H, Boenig RI, Wrin T, Zwick MB, Whalen RG.

PLoS One. 2013;8(1):e52732. doi: 10.1371/journal.pone.0052732. Epub 2013 Jan 9.

18.

2G12-expressing B cell lines may aid in HIV carbohydrate vaccine design strategies.

Doores KJ, Huber M, Le KM, Wang SK, Doyle-Cooper C, Cooper A, Pantophlet R, Wong CH, Nemazee D, Burton DR.

J Virol. 2013 Feb;87(4):2234-41. doi: 10.1128/JVI.02820-12. Epub 2012 Dec 5.

19.

Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12.

Marradi M, Di Gianvincenzo P, Enríquez-Navas PM, Martínez-Ávila OM, Chiodo F, Yuste E, Angulo J, Penadés S.

J Mol Biol. 2011 Jul 29;410(5):798-810. doi: 10.1016/j.jmb.2011.03.042. Epub 2011 Mar 25.

PMID:
21440555
20.

Expression, glycoform characterization, and antibody-binding of HIV-1 V3 glycopeptide domain fused with human IgG1-Fc.

Yang Q, Li C, Wei Y, Huang W, Wang LX.

Bioconjug Chem. 2010 May 19;21(5):875-83. doi: 10.1021/bc9004238.

Supplemental Content

Support Center