Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 272

1.

High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air.

Sun JB, Zhao F, Tang T, Jiang W, Tian JS, Li Y, Li JL.

Appl Microbiol Biotechnol. 2008 Jun;79(3):389-97. doi: 10.1007/s00253-008-1453-y. Epub 2008 Apr 19.

PMID:
18425510
2.

Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor.

Heyen U, Schüler D.

Appl Microbiol Biotechnol. 2003 Jun;61(5-6):536-44. Epub 2003 Feb 20.

PMID:
12764570
3.

Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density.

Liu Y, Li GR, Guo FF, Jiang W, Li Y, Li LJ.

Microb Cell Fact. 2010 Dec 12;9:99. doi: 10.1186/1475-2859-9-99.

4.

A mutation upstream of an ATPase gene significantly increases magnetosome production in Magnetospirillum gryphiswaldense.

Liu J, Ding Y, Jiang W, Tian J, Li Y, Li J.

Appl Microbiol Biotechnol. 2008 Dec;81(3):551-8. doi: 10.1007/s00253-008-1665-1. Epub 2008 Sep 18.

PMID:
18800186
5.

Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1.

Rong C, Huang Y, Zhang W, Jiang W, Li Y, Li J.

Res Microbiol. 2008 Sep-Oct;159(7-8):530-6. doi: 10.1016/j.resmic.2008.06.005. Epub 2008 Jun 28.

PMID:
18639631
6.

Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense.

Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJ, van Loosdrecht MC.

Environ Microbiol. 2010 Apr;12(4):1031-40. doi: 10.1111/j.1462-2920.2009.02148.x. Epub 2010 Jan 26.

PMID:
20105221
7.

A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factors.

Yang J, Li S, Huang X, Tang T, Jiang W, Zhang T, Li Y.

Front Microbiol. 2013 Jul 24;4:210. doi: 10.3389/fmicb.2013.00210. eCollection 2013.

8.

Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies.

Zhang Y, Zhang X, Jiang W, Li Y, Li J.

Appl Environ Microbiol. 2011 Sep;77(17):5851-6. doi: 10.1128/AEM.05962-11. Epub 2011 Jul 1.

9.

Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.

Wang Q, Liu JX, Zhang WJ, Zhang TW, Yang J, Li Y.

FEMS Microbiol Lett. 2013 Oct;347(2):163-72. doi: 10.1111/1574-6968.12234. Epub 2013 Sep 6.

10.

Analysis of magnetosome chains in magnetotactic bacteria by magnetic measurements and automated image analysis of electron micrographs.

Katzmann E, Eibauer M, Lin W, Pan Y, Plitzko JM, Schüler D.

Appl Environ Microbiol. 2013 Dec;79(24):7755-62. doi: 10.1128/AEM.02143-13. Epub 2013 Oct 4.

11.

Effect of oxidative stress on the growth of magnetic particles in Magnetospirillum magneticum.

Popa R, Fang W, Nealson KH, Souza-Egipsy V, Berquó TS, Benerjee SK, Penn LR.

Int Microbiol. 2009 Mar;12(1):49-57.

12.

Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei.

Jin ZH, Lin JP, Cen PL.

J Zhejiang Univ Sci. 2004 Dec;5(12):1590-6.

PMID:
15547969
13.

Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation.

Wang Q, Wang M, Wang X, Guan G, Li Y, Peng Y, Li J.

Appl Environ Microbiol. 2015 Dec;81(23):8044-53. doi: 10.1128/AEM.02585-15. Epub 2015 Sep 18.

14.

Genetics and cell biology of magnetosome formation in magnetotactic bacteria.

Schüler D.

FEMS Microbiol Rev. 2008 Jul;32(4):654-72. doi: 10.1111/j.1574-6976.2008.00116.x. Epub 2008 Jun 2. Review.

15.

Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.

Wang X, Wang Q, Zhang Y, Wang Y, Zhou Y, Zhang W, Wen T, Li L, Zuo M, Zhang Z, Tian J, Jiang W, Li Y, Wang L, Li J.

Environ Microbiol Rep. 2016 Jun;8(3):371-81. doi: 10.1111/1758-2229.12395. Epub 2016 May 16.

PMID:
27043321
16.

High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae.

Shang F, Wen S, Wang X, Tan T.

J Biosci Bioeng. 2006 Jan;101(1):38-41.

PMID:
16503289
17.

Oxygen transfer rate control in the production of human-like collagen by recombinant Escherichia coli.

Ma X, Fan D, Shang LA, Cai Q, Chi L, Zhu C, Mi Y, Luo YE.

Biotechnol Appl Biochem. 2010 Mar 19;55(4):169-74. doi: 10.1042/BA20090314.

PMID:
20132095
18.

The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties.

Alphandéry E, Amor M, Guyot F, Chebbi I.

Appl Microbiol Biotechnol. 2012 Nov;96(3):663-70. doi: 10.1007/s00253-012-4199-5. Epub 2012 Jun 16. Erratum in: Appl Microbiol Biotechnol. 2013 Jul;97(13):6111.

PMID:
22707052
19.

MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1.

Yang J, Li S, Huang X, Li J, Li L, Pan Y, Li Y.

BMC Microbiol. 2013 Sep 11;13:203. doi: 10.1186/1471-2180-13-203.

20.

Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense.

Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D.

Mol Microbiol. 2010 Jul 1;77(1):208-24. doi: 10.1111/j.1365-2958.2010.07202.x. Epub 2010 May 12.

Supplemental Content

Support Center