Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits.

Geromel C, Ferreira LP, Davrieux F, Guyot B, Ribeyre F, Brígida dos Santos Scholz M, Protasio Pereira LF, Vaast P, Pot D, Leroy T, Androcioli Filho A, Esteves Vieira LG, Mazzafera P, Marraccini P.

Plant Physiol Biochem. 2008 May-Jun;46(5-6):569-79. doi: 10.1016/j.plaphy.2008.02.006.

PMID:
18420417
2.

Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development.

Geromel C, Ferreira LP, Guerreiro SM, Cavalari AA, Pot D, Pereira LF, Leroy T, Vieira LG, Mazzafera P, Marraccini P.

J Exp Bot. 2006;57(12):3243-58.

PMID:
16926239
3.

Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea Arabica L. cv. Catimor) harvested from north-eastern Thailand.

Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S.

J Sci Food Agric. 2012 Jul;92(9):1956-63. doi: 10.1002/jsfa.5568.

PMID:
22252511
4.

Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development.

Budzinski IG, Santos TB, Sera T, Pot D, Vieira LG, Pereira LF.

Plant Biol (Stuttg). 2011 May;13(3):462-71. doi: 10.1111/j.1438-8677.2010.00400.x.

PMID:
21489097
5.

Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L.

Cação SM, Leite TF, Budzinski IG, dos Santos TB, Scholz MB, Carpentieri-Pipolo V, Domingues DS, Vieira LG, Pereira LF.

Genet Mol Res. 2012 Sep 3;11(3):3186-97.

6.

Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis.

Privat I, Foucrier S, Prins A, Epalle T, Eychenne M, Kandalaft L, Caillet V, Lin C, Tanksley S, Foyer C, McCarthy J.

New Phytol. 2008;178(4):781-97. doi: 10.1111/j.1469-8137.2008.02425.x.

7.

Molecular characterization and functional analysis of the β-galactosidase gene during Coffea arabica (L.) fruit development.

Figueiredo SA, Lashermes P, Aragão FJ.

J Exp Bot. 2011 May;62(8):2691-703. doi: 10.1093/jxb/erq440.

PMID:
21239378
9.

Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants.

Koshiro Y, Jackson MC, Katahira R, Wang ML, Nagai C, Ashihara H.

Z Naturforsch C. 2007 Sep-Oct;62(9-10):731-42.

PMID:
18069248
10.

[Carbohydrate metabolism during fruit development of bayberry (Myrica rubra Sieb. et Zucc.)].

Chen JW, Chen ZM, Qian JB, Qin QP, Liu XK, Xie M, Yang RX, Zhang SL.

Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2006 Aug;32(4):438-44. Chinese.

PMID:
16957395
11.

Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain.

Simkin AJ, Qian T, Caillet V, Michoux F, Ben Amor M, Lin C, Tanksley S, McCarthy J.

J Plant Physiol. 2006 May;163(7):691-708.

PMID:
16442665
12.

Comparative proteomic analysis between early developmental stages of the Coffea arabica fruits.

Bandil GB, Etto RM, Galvão CW, Ramos HJ, Souza EM, Pedrosa FO, Chaves DF, Huergo LF, Ayub RA.

Genet Mol Res. 2013 Oct 29;12(4):5102-10. doi: 10.4238/2013.October.29.4.

13.

[Sugar transport, metabolism, accumulation and their regulation in fruits].

Chen JW, Zhang SL, Zhang LC.

Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2004 Feb;30(1):1-10. Review. Chinese.

PMID:
15583402
14.

Flower development in Coffea arabica L.: new insights into MADS-box genes.

de Oliveira RR, Cesarino I, Mazzafera P, Dornelas MC.

Plant Reprod. 2014 Jun;27(2):79-94. doi: 10.1007/s00497-014-0242-2.

PMID:
24715004
15.

Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.

Yativ M, Harary I, Wolf S.

J Plant Physiol. 2010 May 15;167(8):589-96. doi: 10.1016/j.jplph.2009.11.009.

PMID:
20036442
16.

Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

Alves LC, Magalhães DM, Labate MT, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LG, Pereira LF.

J Agric Food Chem. 2016 Feb 24;64(7):1635-47. doi: 10.1021/acs.jafc.5b04376.

PMID:
26809209
17.

Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits.

Yuyama PM, Reis Júnior O, Ivamoto ST, Domingues DS, Carazzolle MF, Pereira GA, Charmetant P, Leroy T, Pereira LF.

Mol Genet Genomics. 2016 Feb;291(1):323-36. doi: 10.1007/s00438-015-1111-x.

PMID:
26334613
18.

Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta).

Perrois C, Strickler SR, Mathieu G, Lepelley M, Bedon L, Michaux S, Husson J, Mueller L, Privat I.

Planta. 2015 Jan;241(1):179-91. doi: 10.1007/s00425-014-2170-7.

19.

CoffeebEST: an integrated resource for Coffea spp expressed sequence tags.

Paschoal AR, Fernandes ED, Silva JC, Lopes FM, Pereira LF, Domingues DS.

Genet Mol Res. 2014 Dec 19;13(4):10913-20. doi: 10.4238/2014.December.19.13.

20.

Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study.

Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, de Kochko A, Dussert S.

New Phytol. 2009;182(1):146-62. doi: 10.1111/j.1469-8137.2008.02742.x.

Supplemental Content

Support Center