Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast.

Ruotolo R, Marchini G, Ottonello S.

Genome Biol. 2008 Apr 7;9(4):R67. doi: 10.1186/gb-2008-9-4-r67.

2.

Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae.

Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ.

BMC Genomics. 2009 Mar 12;10:105. doi: 10.1186/1471-2164-10-105.

3.

A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.

Arita A, Zhou X, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz A, Klein CB, Dai W, Begley TJ, Costa M.

BMC Genomics. 2009 Nov 15;10:524. doi: 10.1186/1471-2164-10-524.

4.
5.
6.

Metal(loid)s and radionuclides cytotoxicity in Saccharomyces cerevisiae. Role of YCF1, glutathione and effect of buthionine sulfoximine.

Prévéral S, Ansoborlo E, Mari S, Vavasseur A, Forestier C.

Biochimie. 2006 Nov;88(11):1651-63.

PMID:
16806635
7.

High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae.

Bleackley MR, Young BP, Loewen CJ, MacGillivray RT.

Metallomics. 2011 Feb;3(2):195-205. doi: 10.1039/c0mt00035c.

PMID:
21212869
8.

Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.

Persans MW, Nieman K, Salt DE.

Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9995-10000.

9.

Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.

Jensen LT, Culotta VC.

J Mol Biol. 2002 Apr 26;318(2):251-60.

PMID:
12051835
10.

Impact of acute metal stress in Saccharomyces cerevisiae.

Hosiner D, Gerber S, Lichtenberg-Fraté H, Glaser W, Schüller C, Klipp E.

PLoS One. 2014 Jan 9;9(1):e83330. doi: 10.1371/journal.pone.0083330.

11.

Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.

Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD.

Toxicol Sci. 2008 Jan;101(1):140-51. Erratum in: Toxicol Sci. 2008 Mar;102(1):205.

13.

Endoplasmic reticulum is a major target of cadmium toxicity in yeast.

Gardarin A, Chédin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J.

Mol Microbiol. 2010 May;76(4):1034-48. doi: 10.1111/j.1365-2958.2010.07166.x.

14.
15.

A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.

Adle DJ, Sinani D, Kim H, Lee J.

J Biol Chem. 2007 Jan 12;282(2):947-55.

16.

Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2.

Schmidt K, Wolfe DM, Stiller B, Pearce DA.

Biochem Biophys Res Commun. 2009 May 29;383(2):198-202. doi: 10.1016/j.bbrc.2009.03.151.

17.

Thiol involvement in the inhibition of DNA repair by metals in mammalian cells.

Snyder RD, Lachmann PJ.

Mol Toxicol. 1989 Apr-Jun;2(2):117-28.

PMID:
2702302
18.
19.

Molecular mechanisms controlling sensitivity to toxic metal ions in yeast.

Perego P, Howell SB.

Toxicol Appl Pharmacol. 1997 Dec;147(2):312-8. Review.

PMID:
9439726
20.

Genome-scale genetic screen of lead ion-sensitive gene deletion mutations in Saccharomyces cerevisiae.

Du J, Cao C, Jiang L.

Gene. 2015 Jun 1;563(2):155-9. doi: 10.1016/j.gene.2015.03.018.

PMID:
25773006
Items per page

Supplemental Content

Support Center