Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 440

1.

Transcription profiling of soybean nodulation by Bradyrhizobium japonicum.

Brechenmacher L, Kim MY, Benitez M, Li M, Joshi T, Calla B, Lee MP, Libault M, Vodkin LO, Xu D, Lee SH, Clough SJ, Stacey G.

Mol Plant Microbe Interact. 2008 May;21(5):631-45. doi: 10.1094/MPMI-21-5-0631.

2.

Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection.

Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley RJ, Bilgin DD, Radwan O, Neece DJ, Clough SJ, May GD, Stacey G.

Plant Physiol. 2010 Feb;152(2):541-52. doi: 10.1104/pp.109.148379.

3.

Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development.

Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger RE, Taylor CG, Xu D, Nguyen HT, Stacey G.

Plant Physiol. 2009 Nov;151(3):1207-20. doi: 10.1104/pp.109.144030.

4.

Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases.

Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQ, Pandey S, Xu D, Yu O.

BMC Plant Biol. 2010 Nov 9;10:243. doi: 10.1186/1471-2229-10-243.

5.

Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.

Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H.

Mol Plant Microbe Interact. 2007 Nov;20(11):1353-63.

6.

Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum.

Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G.

Mol Plant Microbe Interact. 2005 May;18(5):458-67.

7.

Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots.

Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ.

Plant Biotechnol J. 2012 Oct;10(8):995-1010. doi: 10.1111/j.1467-7652.2012.00729.x.

8.

An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.

Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G.

Proteomics. 2010 Apr;10(7):1391-400. doi: 10.1002/pmic.200900710.

PMID:
20104621
9.

Analysis of the root nodule-enhanced transcriptome in soybean.

Lee H, Hur CG, Oh CJ, Kim HB, Pakr SY, An CS.

Mol Cells. 2004 Aug 31;18(1):53-62.

10.

[Effect of phytoregulator reglag on symbiotic properties of Bradyrhizobium japonicum 634b].

Kyrychenko OV, Tytova LV, Zhemoĭda AV, Komisarenko AH, Daskaliuk TM.

Mikrobiol Z. 2008 Jan-Feb;70(1):17-24. Ukrainian.

PMID:
18416150
11.

A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.

Libault M, Govindarajulu M, Berg RH, Ong YT, Puricelli K, Taylor CG, Xu D, Stacey G.

Mol Plant Microbe Interact. 2011 Sep;24(9):1051-60. doi: 10.1094/MPMI-12-10-0281.

12.

Molecular analysis of lipoxygenases associated with nodule development in soybean.

Hayashi S, Gresshoff PM, Kinkema M.

Mol Plant Microbe Interact. 2008 Jun;21(6):843-53. doi: 10.1094/MPMI-21-6-0843.

13.

14-3-3 proteins SGF14c and SGF14l play critical roles during soybean nodulation.

Radwan O, Wu X, Govindarajulu M, Libault M, Neece DJ, Oh MH, Berg RH, Stacey G, Taylor CG, Huber SC, Clough SJ.

Plant Physiol. 2012 Dec;160(4):2125-36. doi: 10.1104/pp.112.207027.

14.

[Efficacy of biological preparations of soybean root nodule bacteria modified with a homologous lectin].

Sytnikov DM, Kots' SIa, Datsenko VK.

Prikl Biokhim Mikrobiol. 2007 May-Jun;43(3):304-10. Russian.

PMID:
17619577
15.

Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean.

Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG.

Mol Plant Microbe Interact. 2007 Mar;20(3):293-305.

16.

Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean.

Althabegoiti MJ, López-García SL, Piccinetti C, Mongiardini EJ, Pérez-Giménez J, Quelas JI, Perticari A, Lodeiro AR.

FEMS Microbiol Lett. 2008 May;282(1):115-23. doi: 10.1111/j.1574-6968.2008.01114.x.

17.

Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions.

Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyaneshwar P.

Mol Plant Microbe Interact. 2011 Apr;24(4):451-7. doi: 10.1094/MPMI-08-10-0184.

18.

The genistein stimulon of Bradyrhizobium japonicum.

Lang K, Lindemann A, Hauser F, Göttfert M.

Mol Genet Genomics. 2008 Mar;279(3):203-11. doi: 10.1007/s00438-007-0280-7.

PMID:
18214545
19.

Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.

Nontachaiyapoom S, Scott PT, Men AE, Kinkema M, Schenk PM, Gresshoff PM.

Mol Plant Microbe Interact. 2007 Jul;20(7):769-80.

20.

Symbiotic N nutrition, bradyrhizobial biodiversity and photosynthetic functioning of six inoculated promiscuous-nodulating soybean genotypes.

Pule-Meulenberg F, Gyogluu C, Naab J, Dakora FD.

J Plant Physiol. 2011 Apr 15;168(6):540-8. doi: 10.1016/j.jplph.2010.08.019.

PMID:
21044808
Items per page

Supplemental Content

Support Center