Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Metabolism of the folate precursor p-aminobenzoate in plants: glucose ester formation and vacuolar storage.

Eudes A, Bozzo GG, Waller JC, Naponelli V, Lim EK, Bowles DJ, Gregory JF 3rd, Hanson AD.

J Biol Chem. 2008 May 30;283(22):15451-9. doi: 10.1074/jbc.M709591200. Epub 2008 Apr 2.

2.

The folate precursor p-aminobenzoate is reversibly converted to its glucose ester in the plant cytosol.

Quinlivan EP, Roje S, Basset G, Shachar-Hill Y, Gregory JF 3rd, Hanson AD.

J Biol Chem. 2003 Jun 6;278(23):20731-7. Epub 2003 Mar 31.

3.

Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids.

Basset GJ, Quinlivan EP, Ravanel S, Rébeillé F, Nichols BP, Shinozaki K, Seki M, Adams-Phillips LC, Giovannoni JJ, Gregory JF 3rd, Hanson AD.

Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1496-501. Epub 2004 Jan 26.

4.

Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase.

Basset GJ, Ravanel S, Quinlivan EP, White R, Giovannoni JJ, Rébeillé F, Nichols BP, Shinozaki K, Seki M, Gregory JF 3rd, Hanson AD.

Plant J. 2004 Nov;40(4):453-61.

5.

Plant gamma-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles.

Orsomando G, de la Garza RD, Green BJ, Peng M, Rea PA, Ryan TJ, Gregory JF 3rd, Hanson AD.

J Biol Chem. 2005 Aug 12;280(32):28877-84. Epub 2005 Jun 16.

6.

Free and total para-aminobenzoic acid analysis in plants with high-performance liquid chromatography/tandem mass spectrometry.

Zhang GF, Mortier KA, Storozhenko S, Van De Steene J, Van Der Straeten D, Lambert WE.

Rapid Commun Mass Spectrom. 2005;19(8):963-9.

PMID:
15759312
7.

Plant Vacuolar ATP-binding Cassette Transporters That Translocate Folates and Antifolates in Vitro and Contribute to Antifolate Tolerance in Vivo.

Raichaudhuri A, Peng M, Naponelli V, Chen S, Sánchez-Fernández R, Gu H, Gregory JF 3rd, Hanson AD, Rea PA.

J Biol Chem. 2009 Mar 27;284(13):8449-60. doi: 10.1074/jbc.M808632200. Epub 2009 Jan 9.

8.

Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis.

Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M.

Plant Physiol. 2011 Apr;155(4):1723-34. doi: 10.1104/pp.110.168716. Epub 2010 Nov 29.

9.

Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis.

Wegkamp A, van Oorschot W, de Vos WM, Smid EJ.

Appl Environ Microbiol. 2007 Apr;73(8):2673-81. Epub 2007 Feb 16.

10.

Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid.

Crisan ME, Bourosh P, Maffei ME, Forni A, Pieraccini S, Sironi M, Chumakov YM.

PLoS One. 2014 Jul 23;9(7):e101892. doi: 10.1371/journal.pone.0101892. eCollection 2014.

11.

Folate synthesis in plants: purification, kinetic properties, and inhibition of aminodeoxychorismate synthase.

Sahr T, Ravanel S, Basset G, Nichols BP, Hanson AD, Rébeillé F.

Biochem J. 2006 May 15;396(1):157-62.

12.

Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts.

Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rébeillé F, Ravanel S.

J Biol Chem. 2005 Oct 14;280(41):34823-31. Epub 2005 Jul 29.

13.

Mitochondria are a major site for folate and thymidylate synthesis in plants.

Neuburger M, Rébeillé F, Jourdain A, Nakamura S, Douce R.

J Biol Chem. 1996 Apr 19;271(16):9466-72.

14.

Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis.

Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller II, Heyer AG, Marten I, Hedrich R, Neuhaus HE.

Plant Physiol. 2010 Oct;154(2):665-77. doi: 10.1104/pp.110.162040. Epub 2010 Aug 13.

15.

Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids.

Klaus SM, Kunji ER, Bozzo GG, Noiriel A, de la Garza RD, Basset GJ, Ravanel S, Rébeillé F, Gregory JF 3rd, Hanson AD.

J Biol Chem. 2005 Nov 18;280(46):38457-63. Epub 2005 Sep 14.

16.

Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities.

Fraser CM, Thompson MG, Shirley AM, Ralph J, Schoenherr JA, Sinlapadech T, Hall MC, Chapple C.

Plant Physiol. 2007 Aug;144(4):1986-99. Epub 2007 Jun 28.

17.

An ER-localized form of PV72, a seed-specific vacuolar sorting receptor, interferes the transport of an NPIR-containing proteinase in Arabidopsis leaves.

Watanabe E, Shimada T, Tamura K, Matsushima R, Koumoto Y, Nishimura M, Hara-Nishimura I.

Plant Cell Physiol. 2004 Jan;45(1):9-17.

PMID:
14749481
18.
19.

Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport.

Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE.

Plant Cell. 2006 Dec;18(12):3476-90. Epub 2006 Dec 8.

20.

Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.

Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R.

Plant J. 2011 Oct;68(1):129-36. doi: 10.1111/j.1365-313X.2011.04672.x. Epub 2011 Jul 27.

Supplemental Content

Support Center