Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 383

1.

Effect of phosphorylation on the transactivation activity of Epstein-Barr virus BMRF1, a major target of the viral BGLF4 kinase.

Yang PW, Chang SS, Tsai CH, Chao YH, Chen MR.

J Gen Virol. 2008 Apr;89(Pt 4):884-95. doi: 10.1099/vir.0.83546-0.

PMID:
18343828
2.
3.

Characterization of Epstein-Barr virus BGLF4 kinase expression control at the transcriptional and translational levels.

Wang JT, Chuang YC, Chen KL, Lu CC, Doong SL, Cheng HH, Chen YL, Liu TY, Chang Y, Han CH, Yeh SW, Chen MR.

J Gen Virol. 2010 Sep;91(Pt 9):2186-96. doi: 10.1099/vir.0.019729-0.

PMID:
20444992
4.

Detection of Epstein-Barr virus BGLF4 protein kinase in virus replication compartments and virus particles.

Wang JT, Yang PW, Lee CP, Han CH, Tsai CH, Chen MR.

J Gen Virol. 2005 Dec;86(Pt 12):3215-25.

PMID:
16298966
5.

Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1 immediate-early protein.

Nakayama S, Murata T, Murayama K, Yasui Y, Sato Y, Kudoh A, Iwahori S, Isomura H, Kanda T, Tsurumi T.

J Biol Chem. 2009 Aug 7;284(32):21557-68. doi: 10.1074/jbc.M109.015685.

6.

Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1.

Schepers A, Pich D, Hammerschmidt W.

Virology. 1996 Jun 15;220(2):367-76.

7.

Epstein-Barr virus protein kinase BGLF4 interacts with viral transactivator BZLF1 and regulates its transactivation activity.

Asai R, Kato A, Kawaguchi Y.

J Gen Virol. 2009 Jul;90(Pt 7):1575-81. doi: 10.1099/vir.0.010462-0.

PMID:
19321754
8.

Identification of transactivator and nuclear localization domains in the Epstein-Barr virus DNA polymerase accessory protein, BMRF1.

Zhang Q, Holley-Guthrie E, Dorsky D, Kenney S.

J Gen Virol. 1999 Jan;80 ( Pt 1):69-74.

PMID:
9934686
9.

Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication.

Zhang Q, Hong Y, Dorsky D, Holley-Guthrie E, Zalani S, Elshiekh NA, Kiehl A, Le T, Kenney S.

J Virol. 1996 Aug;70(8):5131-42.

10.

Architecture of replication compartments formed during Epstein-Barr virus lytic replication.

Daikoku T, Kudoh A, Fujita M, Sugaya Y, Isomura H, Shirata N, Tsurumi T.

J Virol. 2005 Mar;79(6):3409-18.

11.

Epstein-Barr virus BGLF4 kinase downregulates NF-κB transactivation through phosphorylation of coactivator UXT.

Chang LS, Wang JT, Doong SL, Lee CP, Chang CW, Tsai CH, Yeh SW, Hsieh CY, Chen MR.

J Virol. 2012 Nov;86(22):12176-86. doi: 10.1128/JVI.01918-12.

12.
13.

The Epstein-Barr virus protein kinase BGLF4 and the exonuclease BGLF5 have opposite effects on the regulation of viral protein production.

Feederle R, Mehl-Lautscham AM, Bannert H, Delecluse HJ.

J Virol. 2009 Nov;83(21):10877-91. doi: 10.1128/JVI.00525-09.

14.

The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins.

Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD.

J Virol. 1998 Nov;72(11):8559-67.

15.
16.

Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

Murata T, Isomura H, Yamashita Y, Toyama S, Sato Y, Nakayama S, Kudoh A, Iwahori S, Kanda T, Tsurumi T.

Virology. 2009 Jun 20;389(1-2):75-81. doi: 10.1016/j.virol.2009.04.007.

17.

Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II.

Lee CP, Chen JY, Wang JT, Kimura K, Takemoto A, Lu CC, Chen MR.

J Virol. 2007 May;81(10):5166-80.

19.
20.
Items per page

Supplemental Content

Support Center