Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 311

1.

Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.

Han G, Ye M, Zhou H, Jiang X, Feng S, Jiang X, Tian R, Wan D, Zou H, Gu J.

Proteomics. 2008 Apr;8(7):1346-61. doi: 10.1002/pmic.200700884.

PMID:
18318008
2.

Fractionation of phosphopeptides on strong anion-exchange capillary trap column for large-scale phosphoproteome analysis of microgram samples.

Wang F, Han G, Yu Z, Jiang X, Sun S, Chen R, Ye M, Zou H.

J Sep Sci. 2010 Jul;33(13):1879-87. doi: 10.1002/jssc.200900718.

PMID:
20533337
3.

Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).

Nie S, Dai J, Ning ZB, Cao XJ, Sheng QH, Zeng R.

J Proteome Res. 2010 Sep 3;9(9):4585-94. doi: 10.1021/pr100632h.

PMID:
20681634
4.

Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis.

Wei J, Zhang Y, Wang J, Tan F, Liu J, Cai Y, Qian X.

Rapid Commun Mass Spectrom. 2008 Apr;22(7):1069-80. doi: 10.1002/rcm.3485.

PMID:
18327884
5.

Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.

Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X.

J Proteome Res. 2008 Jun;7(6):2526-38. doi: 10.1021/pr700582z. Epub 2008 May 13.

PMID:
18473453
6.

Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.

Han G, Ye M, Liu H, Song C, Sun D, Wu Y, Jiang X, Chen R, Wang C, Wang L, Zou H.

Electrophoresis. 2010 Mar;31(6):1080-9. doi: 10.1002/elps.200900493.

PMID:
20166139
7.

Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis.

Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, Deng C, Yang P, Zhang X.

J Chromatogr A. 2007 Nov 16;1172(1):57-71. Epub 2007 Oct 2.

PMID:
17936290
8.

Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis.

Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, Gong B.

Mol Cell Proteomics. 2007 Sep;6(9):1656-65. Epub 2007 Jun 17.

9.

Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis.

Zhou H, Tian R, Ye M, Xu S, Feng S, Pan C, Jiang X, Li X, Zou H.

Electrophoresis. 2007 Jul;28(13):2201-15.

PMID:
17539039
10.

Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver.

Tan F, Zhang Y, Mi W, Wang J, Wei J, Cai Y, Qian X.

J Proteome Res. 2008 Mar;7(3):1078-87. doi: 10.1021/pr700655d. Epub 2008 Feb 12.

PMID:
18266315
11.

Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest.

Dong M, Wu M, Wang F, Qin H, Han G, Dong J, Wu R, Ye M, Liu Z, Zou H.

Anal Chem. 2010 Apr 1;82(7):2907-15. doi: 10.1021/ac902907w.

PMID:
20199055
12.

Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis.

Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H.

J Proteome Res. 2008 Sep;7(9):3957-67. doi: 10.1021/pr800223m. Epub 2008 Jul 17.

PMID:
18630941
13.

Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides.

Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, Wu R, Ye M, Zou H.

Anal Chim Acta. 2009 Mar 16;636(1):34-41. doi: 10.1016/j.aca.2009.01.033. Epub 2009 Jan 22.

PMID:
19231353
14.

Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.

Dai J, Wang LS, Wu YB, Sheng QH, Wu JR, Shieh CH, Zeng R.

J Proteome Res. 2009 Jan;8(1):133-41. doi: 10.1021/pr800381w.

PMID:
19053533
15.

Complementary workflow for global phosphoproteome analysis.

Li QR, Ning ZB, Yang XL, Wu JR, Zeng R.

Electrophoresis. 2012 Nov;33(22):3291-8. doi: 10.1002/elps.201200124. Epub 2012 Oct 24.

PMID:
23097065
16.

Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry.

Dai J, Jin WH, Sheng QH, Shieh CH, Wu JR, Zeng R.

J Proteome Res. 2007 Jan;6(1):250-62.

PMID:
17203969
17.

Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment.

Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H, Mohammed S, Heck AJ.

Mol Cell Proteomics. 2011 Oct;10(10):M110.006452. doi: 10.1074/mcp.M110.006452. Epub 2011 Jun 29. Erratum in: Mol Cell Proteomics. 2013 Sep;12(9):2673. Mohammed, Shabaz [added].

18.

Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection.

McNulty DE, Annan RS.

Mol Cell Proteomics. 2008 May;7(5):971-80. doi: 10.1074/mcp.M700543-MCP200. Epub 2008 Jan 22.

19.

Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach.

Hennrich ML, Groenewold V, Kops GJ, Heck AJ, Mohammed S.

Anal Chem. 2011 Sep 15;83(18):7137-43. doi: 10.1021/ac2015068. Epub 2011 Aug 17. Erratum in: Anal Chem. 2011 Sep 15;83(18):7143.

PMID:
21815630
20.

Supplemental Content

Support Center