Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering.

Cortizo MS, Molinuevo MS, Cortizo AM.

J Tissue Eng Regen Med. 2008 Jan;2(1):33-42. doi: 10.1002/term.62.

PMID:
18273918
2.

Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.

Fernandez JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS.

J Biomater Sci Polym Ed. 2010;21(10):1297-312. doi: 10.1163/092050609X12517190417632. Epub 2010 Jun 8.

PMID:
20534186
3.

Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.

Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM.

J Tissue Eng Regen Med. 2011 Jun;5(6):e126-35. doi: 10.1002/term.394. Epub 2011 Feb 10.

PMID:
21312338
4.

Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.

Declercq HA, Cornelissen MJ, Gorskiy TL, Schacht EH.

J Mater Sci Mater Med. 2006 Feb;17(2):113-22.

PMID:
16502243
5.

Porous crosslinked poly(ε-caprolactone fumarate)/nanohydroxyapatite composites for bone tissue engineering.

Farokhi M, Sharifi S, Shafieyan Y, Bagher Z, Mottaghitalab F, Hatampoor A, Imani M, Shokrgozar MA.

J Biomed Mater Res A. 2012 Apr;100(4):1051-60. doi: 10.1002/jbm.a.33241. Epub 2012 Feb 9.

PMID:
22323426
6.

Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.

Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, Ambrosio L, Chiellini F.

Biomed Microdevices. 2012 Dec;14(6):1115-27. doi: 10.1007/s10544-012-9677-0.

PMID:
22767245
7.

New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K.

Mater Sci Eng C Mater Biol Appl. 2015 Nov 1;56:9-21. doi: 10.1016/j.msec.2015.06.020. Epub 2015 Jun 11.

PMID:
26249560
8.

Synthesis, material properties, and biocompatibility of a novel self-cross-linkable poly(caprolactone fumarate) as an injectable tissue engineering scaffold.

Jabbari E, Wang S, Lu L, Gruetzmacher JA, Ameenuddin S, Hefferan TE, Currier BL, Windebank AJ, Yaszemski MJ.

Biomacromolecules. 2005 Sep-Oct;6(5):2503-11.

9.

Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone.

El-Amin SF, Attawia M, Lu HH, Shah AK, Chang R, Hickok NJ, Tuan RS, Laurencin CT.

J Orthop Res. 2002 Jan;20(1):20-8.

10.

Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering.

El-Amin SF, Botchwey E, Tuli R, Kofron MD, Mesfin A, Sethuraman S, Tuan RS, Laurencin CT.

J Biomed Mater Res A. 2006 Mar 1;76(3):439-49.

PMID:
16541483
11.

In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.

Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR.

J Biomed Mater Res A. 2003 Dec 15;67(4):1401-11.

PMID:
14624528
12.

Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

Mistry AS, Cheng SH, Yeh T, Christenson E, Jansen JA, Mikos AG.

J Biomed Mater Res A. 2009 Apr;89(1):68-79. doi: 10.1002/jbm.a.32010.

PMID:
18428800
13.
14.

Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.

Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV.

Biomed Mater. 2012 Dec;7(6):065001. doi: 10.1088/1748-6041/7/6/065001. Epub 2012 Oct 9.

PMID:
23047255
15.

Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress.

McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM.

BMC Cell Biol. 2001;2:16. Epub 2001 Aug 2.

16.

Tissue engineering of bone on micropatterned biodegradable polyester films.

Kenar H, Köse GT, Hasirci V.

Biomaterials. 2006 Feb;27(6):885-95. Epub 2005 Sep 6.

PMID:
16143391
17.

Porous poly (L-lactic acid) scaffolds are optimal substrates for internal colonization by A6 mesoangioblasts and immunocytochemical analyses.

Carfí-Pavia F, Turturici G, Geraci F, Brucato V, La Carrubba V, Luparello C, Sconzo G.

J Biosci. 2009 Dec;34(6):873-9.

18.

Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.

Zhang S, Prabhakaran MP, Qin X, Ramakrishna S.

J Biomater Appl. 2015 May;29(10):1394-406. doi: 10.1177/0885328214568467. Epub 2015 Jan 14.

PMID:
25592285
20.

Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

Deng M, Nair LS, Nukavarapu SP, Jiang T, Kanner WA, Li X, Kumbar SG, Weikel AL, Krogman NR, Allcock HR, Laurencin CT.

Biomaterials. 2010 Jun;31(18):4898-908. doi: 10.1016/j.biomaterials.2010.02.058. Epub 2010 Mar 23.

Supplemental Content

Support Center