Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102


Role of reactive oxygen species in chronic hypoxia-induced pulmonary hypertension and vascular remodeling.

Nozik-Grayck E, Stenmark KR.

Adv Exp Med Biol. 2007;618:101-12. Review.


Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats.

Jankov RP, Kantores C, Pan J, Belik J.

Am J Physiol Lung Cell Mol Physiol. 2008 Feb;294(2):L233-45.


Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox).

Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ.

Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L2-10.


Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension.

Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL.

Am J Physiol Lung Cell Mol Physiol. 2008 Nov;295(5):L881-8. doi: 10.1152/ajplung.00047.2008.


Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.

Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, Michael Hart C, Sutliff RL.

Free Radic Biol Med. 2015 Oct;87:36-47. doi: 10.1016/j.freeradbiomed.2015.05.042.


Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension.

Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL.

Antioxid Redox Signal. 2013 May 10;18(14):1727-38. doi: 10.1089/ars.2012.4823.


Pulmonary arterial responses to reactive oxygen species are altered in newborn piglets with chronic hypoxia-induced pulmonary hypertension.

Fike CD, Aschner JL, Slaughter JC, Kaplowitz MR, Zhang Y, Pfister SL.

Pediatr Res. 2011 Aug;70(2):136-41. doi: 10.1203/PDR.0b013e3182207ce7.


The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice.

Nisbet RE, Graves AS, Kleinhenz DJ, Rupnow HL, Reed AL, Fan TH, Mitchell PO, Sutliff RL, Hart CM.

Am J Respir Cell Mol Biol. 2009 May;40(5):601-9. doi: 10.1165/2008-0145OC.


Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia.

Fresquet F, Pourageaud F, Leblais V, Brandes RP, Savineau JP, Marthan R, Muller B.

Br J Pharmacol. 2006 Jul;148(5):714-23.


Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.

Li Q, Mao M, Qiu Y, Liu G, Sheng T, Yu X, Wang S, Zhu D.

PLoS One. 2016 Feb 12;11(2):e0149164. doi: 10.1371/journal.pone.0149164.


Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia.

Matsui H, Shimosawa T, Itakura K, Guanqun X, Ando K, Fujita T.

Circulation. 2004 May 11;109(18):2246-51.


A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension.

Herget J, Wilhelm J, Novotná J, Eckhardt A, Vytásek R, Mrázková L, Ostádal M.

Physiol Res. 2000;49(5):493-501. Review.


Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling.

Nozik-Grayck E, Suliman HB, Majka S, Albietz J, Van Rheen Z, Roush K, Stenmark KR.

Am J Physiol Lung Cell Mol Physiol. 2008 Sep;295(3):L422-30. doi: 10.1152/ajplung.90293.2008.


Dominant negative mutation of the TGF-beta receptor blocks hypoxia-induced pulmonary vascular remodeling.

Chen YF, Feng JA, Li P, Xing D, Zhang Y, Serra R, Ambalavanan N, Majid-Hassan E, Oparil S.

J Appl Physiol (1985). 2006 Feb;100(2):564-71.


NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets.

Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz MR, Zhang Y, Fike CD.

Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L596-607. doi: 10.1152/ajplung.90568.2008.


The orally active nonpeptide endothelin A-receptor antagonist A-127722 prevents and reverses hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling in Sprague-Dawley rats.

Chen SJ, Chen YF, Opgenorth TJ, Wessale JL, Meng QC, Durand J, DiCarlo VS, Oparil S.

J Cardiovasc Pharmacol. 1997 Jun;29(6):713-25.


NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts.

Li S, Tabar SS, Malec V, Eul BG, Klepetko W, Weissmann N, Grimminger F, Seeger W, Rose F, Hänze J.

Antioxid Redox Signal. 2008 Oct;10(10):1687-98. doi: 10.1089/ars.2008.2035.


Reactive oxygen species production in the early and later stage of chronic ventilatory hypoxia.

Hodyc D, Johnson E, Skoumalová A, Tkaczyk J, Maxová H, Vízek M, Herget J.

Physiol Res. 2012;61(2):145-51.


Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.

Mittal M, Roth M, König P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hänze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N.

Circ Res. 2007 Aug 3;101(3):258-67.

Supplemental Content

Support Center