Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Effect of CCD Readout Noise in Astronomical Speckle Imaging.

Zadnik JA, Beletic JW.

Appl Opt. 1998 Jan 10;37(2):361-8.

PMID:
18268594
2.

Low noise imaging photon counter for astronomy.

Mertz L, Tarbell TD, Title A.

Appl Opt. 1982 Feb 15;21(4):628-34. doi: 10.1364/AO.21.000628.

PMID:
20372509
3.

Imaging thermal objects with photon-counting detectors.

Watson EA, Morris GM.

Appl Opt. 1992 Aug 10;31(23):4751-7. doi: 10.1364/AO.31.004751.

PMID:
20725488
4.

Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution.

Heemskerk JW, Westra AH, Linotte PM, Ligtvoet KM, Zbijewski W, Beekman FJ.

Phys Med Biol. 2007 Apr 21;52(8):N149-62.

PMID:
17404450
5.

Photon-noise-limited operation of intensified CCD cameras.

Frenkel A, Sartor MA, Wlodawski MS.

Appl Opt. 1997 Aug 1;36(22):5288-97.

PMID:
18259344
6.

Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing.

Roggemann MC, Welsh BM.

Appl Opt. 1994 Aug 10;33(23):5400-14. doi: 10.1364/AO.33.005400.

PMID:
20935931
7.

Flexible method to obtain high sensitivity, low-cost CCD cameras for video microscopy.

Cinelli AR.

J Neurosci Methods. 1998 Nov 1;85(1):33-43.

PMID:
9874139
8.

Camera technologies for low light imaging: overview and relative advantages.

Moomaw B.

Methods Cell Biol. 2013;114:243-83. doi: 10.1016/B978-0-12-407761-4.00011-7. Review.

PMID:
23931510
9.

A comparative study of a dual-energy-like imaging technique based on counting-integrating readout.

Roessl E, Herrmann C, Kraft E, Proksa R.

Med Phys. 2011 Dec;38(12):6416-28. doi: 10.1118/1.3651643.

PMID:
22149825
10.

High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera.

Dragojević T, Bronzi D, Varma HM, Valdes CP, Castellvi C, Villa F, Tosi A, Justicia C, Zappa F, Durduran T.

Biomed Opt Express. 2015 Jul 14;6(8):2865-76. doi: 10.1364/BOE.6.002865.

11.

Hadamard spectroscopy with a two-dimensional detecting array.

Mende SB, Claflin ES, Rairden RL, Swenson GR.

Appl Opt. 1993 Dec 1;32(34):7095-105. doi: 10.1364/AO.32.007095.

PMID:
20856574
12.
13.

Optical detection of rapidly moving objects in space.

Priedhorsky W, Bloch JJ.

Appl Opt. 2005 Jan 20;44(3):423-33.

PMID:
15717832
14.
15.

New generation photon-counting cameras: algol and CPNG.

Blazit A, Rondeau X, Thiébaut E, Abe L, Bernengo JC, Chevassut JL, Clausse JM, Dubois JP, Foy R, Mourard D, Patru F, Spang A, Tallon-Bosc I, Tallon M, Tourneur Y, Vakili F.

Appl Opt. 2008 Mar 10;47(8):1141-51.

PMID:
18327288
16.

High-precision measurement of pixel positions in a charge-coupled device.

Shaklan S, Sharman MC, Pravdo SH.

Appl Opt. 1995 Oct 10;34(29):6672-81. doi: 10.1364/AO.34.006672.

PMID:
21060522
17.
18.

A high-sensitivity CCD system for parallel electron energy-loss spectroscopy (CCD for EELS).

Tang Z, Ho R, Xu Z, Shao Z, Somlyo AP.

J Microsc. 1994 Aug;175(Pt 2):100-7.

PMID:
7966250
19.

Solid-state imagers for microscopy.

Aikens RS, Agard DA, Sedat JW.

Methods Cell Biol. 1989;29:291-313. Review.

PMID:
2643764
20.

Optimizing the speckle noise for maximum efficacy of data acquisition in coherent imaging.

Chapeau-Blondeau F, Rousseau D, Blanchard S, Gindre D.

J Opt Soc Am A Opt Image Sci Vis. 2008 Jun;25(6):1287-92.

PMID:
18516139
Items per page

Supplemental Content

Support Center