Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

CSN5 binds to misfolded CFTR and promotes its degradation.

Tanguy G, Drévillon L, Arous N, Hasnain A, Hinzpeter A, Fritsch J, Goossens M, Fanen P.

Biochim Biophys Acta. 2008 Jun;1783(6):1189-99. doi: 10.1016/j.bbamcr.2008.01.010. Epub 2008 Jan 26.

2.

CSN5/JAB1 interacts with the centromeric components CENP-T and CENP-W and regulates their proteasome-mediated degradation.

Chun Y, Lee M, Park B, Lee S.

J Biol Chem. 2013 Sep 20;288(38):27208-19. doi: 10.1074/jbc.M113.469221. Epub 2013 Aug 7.

3.

AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

Johnson JS, Gentzsch M, Zhang L, Ribeiro CM, Kantor B, Kafri T, Pickles RJ, Samulski RJ.

PLoS Pathog. 2011 May;7(5):e1002053. doi: 10.1371/journal.ppat.1002053. Epub 2011 May 19.

4.

Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response.

Gomes-Alves P, Couto F, Pesquita C, Coelho AV, Penque D.

Biochim Biophys Acta. 2010 Apr;1804(4):856-65. doi: 10.1016/j.bbapap.2009.12.013. Epub 2010 Jan 4.

PMID:
20044041
5.

The organization of a CSN5-containing subcomplex of the COP9 signalosome.

Kotiguda GG, Weinberg D, Dessau M, Salvi C, Serino G, Chamovitz DA, Hirsch JA.

J Biol Chem. 2012 Dec 7;287(50):42031-41. doi: 10.1074/jbc.M112.387977. Epub 2012 Oct 18.

6.

Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae.

Kiser GL, Gentzsch M, Kloser AK, Balzi E, Wolf DH, Goffeau A, Riordan JR.

Arch Biochem Biophys. 2001 Jun 15;390(2):195-205.

PMID:
11396922
8.

COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting.

Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, Zhang L, Wu J, Edmonds T, Jambor C, Kappes JC, Zhang HG.

Am J Pathol. 2009 Apr;174(4):1415-25. doi: 10.2353/ajpath.2009.080861. Epub 2009 Feb 26.

9.

Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants.

Sun F, Zhang R, Gong X, Geng X, Drain PF, Frizzell RA.

J Biol Chem. 2006 Dec 1;281(48):36856-63. Epub 2006 Sep 5.

10.

Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.

Farinha CM, Matos P, Amaral MD.

FEBS J. 2013 Sep;280(18):4396-406. doi: 10.1111/febs.12392. Epub 2013 Jul 5. Review.

12.

Antagonistic regulation of cystic fibrosis transmembrane conductance regulator cell surface expression by protein kinases WNK4 and spleen tyrosine kinase.

Mendes AI, Matos P, Moniz S, Luz S, Amaral MD, Farinha CM, Jordan P.

Mol Cell Biol. 2011 Oct;31(19):4076-86. doi: 10.1128/MCB.05152-11. Epub 2011 Aug 1.

13.

XLGαolf regulates expression of p27Kip1 in a CSN5 and CDK2 dependent manner.

Akita K, Takahashi Y, Takata N, Hashimoto M, Kataoka M, Tomigahara Y, Saito K.

Biochem Biophys Res Commun. 2011 Dec 16;416(3-4):385-90. doi: 10.1016/j.bbrc.2011.11.049. Epub 2011 Nov 19.

PMID:
22120635
14.
16.

Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.

Ahner A, Gong X, Frizzell RA.

FEBS J. 2013 Sep;280(18):4430-8. doi: 10.1111/febs.12415. Epub 2013 Jul 22. Review.

17.

Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway.

Yoo JS, Moyer BD, Bannykh S, Yoo HM, Riordan JR, Balch WE.

J Biol Chem. 2002 Mar 29;277(13):11401-9. Epub 2002 Jan 17.

18.
20.

Supplemental Content

Support Center