Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans.

Hu G, Hacham M, Waterman SR, Panepinto J, Shin S, Liu X, Gibbons J, Valyi-Nagy T, Obara K, Jaffe HA, Ohsumi Y, Williamson PR.

J Clin Invest. 2008 Mar;118(3):1186-97. doi: 10.1172/JCI32053.

2.

Role of CTR4 in the Virulence of Cryptococcus neoformans.

Waterman SR, Park YD, Raja M, Qiu J, Hammoud DA, O'Halloran TV, Williamson PR.

MBio. 2012 Oct 2;3(5). pii: e00285-12. doi: 10.1128/mBio.00285-12. Print 2012.

3.

Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans.

Coelho C, Souza AC, Derengowski Lda S, de Leon-Rodriguez C, Wang B, Leon-Rivera R, Bocca AL, Gonçalves T, Casadevall A.

J Immunol. 2015 Mar 1;194(5):2345-57. doi: 10.4049/jimmunol.1402350. Epub 2015 Feb 2.

4.

Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans.

Nicola AM, Albuquerque P, Martinez LR, Dal-Rosso RA, Saylor C, De Jesus M, Nosanchuk JD, Casadevall A.

Infect Immun. 2012 Sep;80(9):3065-76. doi: 10.1128/IAI.00358-12. Epub 2012 Jun 18.

5.

Cryptococcus neoformans gene expression during murine macrophage infection.

Fan W, Kraus PR, Boily MJ, Heitman J.

Eukaryot Cell. 2005 Aug;4(8):1420-33.

6.

The vacuolar Ca²(+) exchanger Vcx1 is involved in calcineurin-dependent Ca²(+) tolerance and virulence in Cryptococcus neoformans.

Kmetzsch L, Staats CC, Simon E, Fonseca FL, de Oliveira DL, Sobrino L, Rodrigues J, Leal AL, Nimrichter L, Rodrigues ML, Schrank A, Vainstein MH.

Eukaryot Cell. 2010 Nov;9(11):1798-805. doi: 10.1128/EC.00114-10. Epub 2010 Oct 1.

7.

Surfactant protein D facilitates Cryptococcus neoformans infection.

Geunes-Boyer S, Beers MF, Perfect JR, Heitman J, Wright JR.

Infect Immun. 2012 Jul;80(7):2444-53. doi: 10.1128/IAI.05613-11. Epub 2012 Apr 30.

8.

Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival.

Geunes-Boyer S, Oliver TN, Janbon G, Lodge JK, Heitman J, Perfect JR, Wright JR.

Infect Immun. 2009 Jul;77(7):2783-94. doi: 10.1128/IAI.00088-09. Epub 2009 May 18.

9.

Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule.

O'Meara TR, Norton D, Price MS, Hay C, Clements MF, Nichols CB, Alspaugh JA.

PLoS Pathog. 2010 Feb 19;6(2):e1000776. doi: 10.1371/journal.ppat.1000776.

10.

Survival defects of Cryptococcus neoformans mutants exposed to human cerebrospinal fluid result in attenuated virulence in an experimental model of meningitis.

Lee A, Toffaletti DL, Tenor J, Soderblom EJ, Thompson JW, Moseley MA, Price M, Perfect JR.

Infect Immun. 2010 Oct;78(10):4213-25. doi: 10.1128/IAI.00551-10. Epub 2010 Aug 9.

11.

Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion.

Tenor JL, Oehlers SH, Yang JL, Tobin DM, Perfect JR.

MBio. 2015 Sep 29;6(5):e01425-15. doi: 10.1128/mBio.01425-15.

12.

The transcriptional response of Cryptococcus neoformans to ingestion by Acanthamoeba castellanii and macrophages provides insights into the evolutionary adaptation to the mammalian host.

Derengowski Lda S, Paes HC, Albuquerque P, Tavares AH, Fernandes L, Silva-Pereira I, Casadevall A.

Eukaryot Cell. 2013 May;12(5):761-74. doi: 10.1128/EC.00073-13. Epub 2013 Mar 22.

13.
14.

Cryptococcus neoformans growth and protection from innate immunity are dependent on expression of a virulence-associated DEAD-box protein, Vad1.

Qiu J, Olszewski MA, Williamson PR.

Infect Immun. 2013 Mar;81(3):777-88. doi: 10.1128/IAI.00821-12. Epub 2012 Dec 21.

15.

Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

Ben-Abdallah M, Sturny-Leclère A, Avé P, Louise A, Moyrand F, Weih F, Janbon G, Mémet S.

PLoS Pathog. 2012;8(3):e1002555. doi: 10.1371/journal.ppat.1002555. Epub 2012 Mar 1.

16.

Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans.

Luberto C, Martinez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P, Toffaletti DL, Cox GM, Perfect JR, Hannun YA, Balish E, Del Poeta M.

J Clin Invest. 2003 Oct;112(7):1080-94.

17.

Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence.

Kmetzsch L, Joffe LS, Staats CC, de Oliveira DL, Fonseca FL, Cordero RJ, Casadevall A, Nimrichter L, Schrank A, Vainstein MH, Rodrigues ML.

Mol Microbiol. 2011 Jul;81(1):206-18. doi: 10.1111/j.1365-2958.2011.07686.x. Epub 2011 May 18.

18.

Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH.

Nicola AM, Robertson EJ, Albuquerque P, Derengowski Lda S, Casadevall A.

MBio. 2011 Aug 9;2(4). pii: e00167-11. doi: 10.1128/mBio.00167-11. Print 2011.

19.

Phospholipase C of Cryptococcus neoformans regulates homeostasis and virulence by providing inositol trisphosphate as a substrate for Arg1 kinase.

Lev S, Desmarini D, Li C, Chayakulkeeree M, Traven A, Sorrell TC, Djordjevic JT.

Infect Immun. 2013 Apr;81(4):1245-55. doi: 10.1128/IAI.01421-12. Epub 2013 Feb 4.

20.

Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans.

Alanio A, Desnos-Ollivier M, Dromer F.

MBio. 2011 Aug 9;2(4). pii: e00158-11. doi: 10.1128/mBio.00158-11. Print 2011.

Supplemental Content

Support Center