Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 268

1.

Non-equivalence of hydrogen transfer from glucose to the pro-R and pro-S methylene positions of ethanol during fermentation by Leuconostoc mesenteroides quantified by 2H NMR at natural abundance.

Robins RJ, Pétavy F, Nemmaoui Y, Ayadi F, Silvestre V, Zhang BL.

J Biol Chem. 2008 Apr 11;283(15):9704-12. doi: 10.1074/jbc.M710272200. Epub 2008 Feb 7.

2.

Quantitative 2H NMR at natural abundance can distinguish the pathway used for glucose fermentation by lactic acid bacteria.

Roger O, Lavigne R, Mahmoud M, Buisson C, Onno B, Zhang BL, Robins RJ.

J Biol Chem. 2004 Jun 11;279(24):24923-8. Epub 2004 Mar 29.

3.
4.

Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited.

Bayle K, Akoka S, Remaud GS, Robins RJ.

J Biol Chem. 2015 Feb 13;290(7):4118-28. doi: 10.1074/jbc.M114.621441. Epub 2014 Dec 23.

5.

Natural abundance hydrogen isotope affiliation between the reactants and the products in glucose fermentation with yeast.

Pionnier S, Robins RJ, Zhang BL.

J Agric Food Chem. 2003 Mar 26;51(7):2076-82.

PMID:
12643676
6.
7.

Novel pathway for alcoholic fermentation of delta-gluconolactone in the yeast Saccharomyces bulderi.

van Dijken JP, van Tuijl A, Luttik MA, Middelhoven WJ, Pronk JT.

J Bacteriol. 2002 Feb;184(3):672-8.

8.

Probing stereoselectivity and pro-chirality of hydride transfer during short-chain alcohol dehydrogenase activity: a combined quantitative 2H NMR and computational approach.

Kwiecień RA, Ayadi F, Nemmaoui Y, Silvestre V, Zhang BL, Robins RJ.

Arch Biochem Biophys. 2009 Feb;482(1-2):42-51. doi: 10.1016/j.abb.2008.11.019. Epub 2008 Nov 25.

PMID:
19061855
9.

Hydrogen transfer pathways of the asymmetric reduction of alpha,beta-unsaturated ketone mediated by baker's yeast.

Chu Y, Zhang BL, Silvestre V, Cheng JP.

Bioorg Chem. 2006 Jun;34(3):158-66. Epub 2006 May 19. Erratum in: Bioorg Chem. 2007 Aug;35(4):354.

PMID:
16712900
10.
11.
12.

Enzymatic in situ analysis by 1H-NMR of the hydrogen transfer stereospecificity of NAD(P)+-dependent dehydrogenases.

Nakajima N, Nakamura K, Esaki N, Tanaka H, Soda K.

J Biochem. 1989 Sep;106(3):515-7.

13.
14.

Investigation of fatty acid elongation and desaturation steps in Fusarium lateritium by quantitative two-dimensional deuterium NMR spectroscopy in chiral oriented media.

Baillif V, Robins RJ, Le Feunteun S, Lesot P, Billault I.

J Biol Chem. 2009 Apr 17;284(16):10783-92. doi: 10.1074/jbc.M807826200. Epub 2009 Feb 12.

16.

The stereospecificity of hydrogen transfer to NAD(P)+ catalyzed by lactol dehydrogenases.

Mostad SB, Helming HL, Groom C, Glasfeld A.

Biochem Biophys Res Commun. 1997 Apr 28;233(3):681-6.

PMID:
9168914
17.

Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae.

Sánchez NS, Calahorra M, González-Hernández JC, Peña A.

Yeast. 2006 Apr 15;23(5):361-74.

18.

NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.

Almeida JR, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2008 Apr;78(6):939-45. doi: 10.1007/s00253-008-1364-y. Epub 2008 Mar 11.

PMID:
18330568
19.

Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.

Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

PMID:
19506862

Supplemental Content

Support Center